第一章 简介	2
第一节 Survey 色谱数据工作站性能	2
1.1 Survey 色谱工作站对计算机的要求	2
1.2 Survey 色谱工作站主要性能	2
1.3 Survey 色谱工作站峰处理能里	2
1.4Survey 色谱工作站定量计算方法	3
1.5 Survey 色谱工作站积分参量	3
第二章 Survey 色谱工作站安装	3
第一节 软件安装	3
第二节 电脑设置	3
第三章 Survey 色谱工作站操作部分	4
第一节 Survey 色谱工作站主窗口	4
第二节 用户管理	6
2.1 个人信息	6
2.2 用户信息	7
2.3 用户角色	8
第三节 项目管理	8
第四节 仪器配置	15
第五节 日志	17
第六节 语言	18
第七节 帮助	18
第八节 IQ	18
第九节 版本	19
第四章 仪器	19
第一节 文件	22
第二节 进样序列	22
第三节 控制窗口	24
第四节 扫描和数据采集窗口	28
4.4.1 数据采集窗口	28
4.4.2 扫描窗口	31
第五节 信息窗口	31
第六节 消息窗口	32
第五章 数据采集与流程处理	33
第一节 方法组	33
第二节 数据采集与处理流程	34
5.2.1 数据采集	34
5.2.2 运行单一样品或样品组	35
5.2.3 样品运行步骤	35
第六章 图谱处理	36
第一节 文件	36
第二节 查看	38
第七章 校正曲线制作	46
第一节 文件	47
第二节 校正	48

第三节	查看	48
第四节	组分表	49
第五节	校正曲线制作	50
7.5.1	外标法	50
7.5.2	内标法	52
第六节	面积外标法的基本操作规程	53
第七节	面积内标法基本操作流程	58

第一章 简介

谢谢您购买我们的 Survey 色谱数据工作站软件(以下简称 Survey 色谱工作站),为了保证您的正确操作,请详细阅读这本说明书,其中介绍了 Survey 色谱工作站的主要性能与技术指标、安装、卸载、调试及操作示例等方面的情况。若不明之处,请及时与我们联系,我们会给您最满意的解答。任何产品都他的不足之处,我们的产品也不例外,如果您对我们的 Survey 色谱工作站有一些建议的话,也敬请及时与我们联系,以便我们根据您的要求对 Survey 色谱工作站进行更新完善。

第一节 Survey 色谱数据工作站性能

1.1 Survey 色谱工作站对计算机的要求

处理器 CPU 2.50GHz 以上,内存 4G 以上 计算机至少有一个网口,一个 USB 接口 安装了中文 Windows XP, Windows7/Windows8 32 位、64 位操作系统 显示器分辨率推荐为 1440*900

1.2 Survey 色谱工作站主要性能

输入通道数:2个 输入电压范围:-2.5V—2.5V 输入阻抗:>10MΩ 积分灵敏度:1uV•秒 最小分辨率:1uV 动态范围:107 线性度:±0.1%

1.3 Survey 色谱工作站峰处理能里

可处理的峰个数:大于1000个(与计算机资源有关) 可处理的最小峰宽: 0.01秒 具有自动时间程序 具有手动积分功能 可自动识别各种复杂峰形并准确分割 基线自动跟踪与校正 负峰影响自动消除 符合 GMP 规定

1.4Survey 色谱工作站定量计算方法

内标法 外标法 归一法

1.5 Survey 色谱工作站积分参量

峰高或峰面积

第二章 Survey 色谱工作站安装

第一节 软件安装

第二节 电脑设置

单击电脑上_____Windows 图标,选择"控制面板",进入"网络和共享中心",点击"本地连接",

● 使用下面的 IP 地址(S): IP 地址(I): 子网掩码(U): 进入 ● 属性(P) ,双击 ● Internet 协议版本 4 (TCP/IPv4) ,选择 默认网关(D): 192.168.1.253

设置 IP 地址,子网掩码,默认网关

IP 地址最后一项输入范围 201-254,设置好后点击确定,关闭设置界面。

注: 1.如果采集盒连接交换机网口,电脑上无需进行上述设置,可直接启动 Survey 软件。 2.把计算机休眠状态设置为:从不。

第三章 Survey 色谱工作站操作部分

双击 Survey 图标进入 Survey 色谱工作站主窗口。Survey 色谱工作站主窗口设有权限的六个 模块出厂设置的默认用户账号为 Admin,密码为 a12345。

第一节 Survey 色谱工作站主窗口

Survey 色谱工作站主窗口包含了 6 个功能模块,分别是仪器窗口、谱图校正、谱图处理、 用户管理、项目管理、仪器配置,这 6 个模块是用户在日常样品采集与数据处理过程中使用的最 多,单击相应的图标会弹出相应的登录窗口,并且各模块设有访问权限。另外在窗口左侧的管理 图标栏中还有 4 个图标,分别是语言、帮助、IQ 和版本,点击相应的图标即可查看该模块,不需 要登录,不设权限。

并

单击任意一个上面所描述的功能模块,会弹出登陆对话框,输入用户名、密码,点确定即可 登录对应窗口。点击登陆对话框下面的"记住",软件即记住当前编辑的用户名和密码,再次登 陆该界面或登陆其他界面时,就不需要再填写用户名和密码了。单击"用户名"右侧▼会弹出下 拉菜单,显示当前 Survey 色谱工作站记录的所有用户及密码,如果要删除下拉菜单 的某个用户,可以选中该用户,单击登录窗口右下角的"清除",则该用户就从下拉 菜单中删除了。

登录	\mathbf{X}
用户名	Admin 💌
密码	*****
🔽 记住	
	登录

主窗口左侧有七个系统图标,下面分别介绍对应的功能

图标	名称	登录	功能
8	用户管理	\checkmark	执行用户注册及权限设置、角色的新建,并可以修改、重置用户密码
8	项目管理	\checkmark	项目的新建、编辑、操作以及审计追踪
٢	仪器配置	\checkmark	管理仪器配置,添加或删除仪器,查看、修改仪器信息
Ø	日志	×	方便用户根据时间、类型、模块以及操作者等,查看软件操作记录
L	语言	×	软件提供中文、英文、日文三种语言供用户切换,使软件通用性更强

?	帮助	×	根据用户的操作模块与需求,软件提供给了3种帮助
Q	IQ	×	
	版本	×	显示当前版本发行的版本

第二节 用户管理

用户管理执行用户注册及权限设置、角色的新建,并可以修改、重置用户密码。调用用户管理、项目管理及仪器配置都会出现登录对话框,选择用户名,输入登录密码才能进入。

Admin 💌

登录

调用用户管理按钮并登陆后,就会出现用户管理对话框,该对话框含有三部分:用户角色、 用户信息和个人信息。

2.1 个人信息

个人信息:修改用户密码和上传电子签名。用户密码修改有两种方式:一种是用户信息里的重置密码,另外一种是个人信息里的密码修改。前面的一种是将密码重置为软件默认密码 "a12345",而后面的一种则是密码可以任意设置。用户可在该界面上传电子签名,用于谱图报 告中的显示的用户电子签名。

☑ 用户管理 (Admin)		
个人信息 用户信息 用,	^户 角色	
		电子签名
用尸名	Admin	上传
新密码		
再输入		
		支持jpg、png、gif、bmp格 式图片
确定	取消	确定 取消

2.2 用户信息

用户信息:该功能模块需要有用户管理权限的用户才能操作。界面主要显示用户相关的信息,包括用户名、角色,创建者、创建时间和备注。在这个界面上可以新建/删除用户、赋予用户角色、使用户有效/无效(无效则用户登录失败)、重置密码、添加备注。重置密码作用是将用户设置的密码重置为系统默认值,另外 Admin 是系统管理员,为软件内置用户,不可以编辑,且默认管理员的角色是 Administrator。

N	用户	管理	(Admin)							
ſ	个人信	息用	户信息 用月	□角色						
		选择	用户名	状态	角色	创建者	创建时间	备注		
	•		Admin	有效	administrator	System	2015-10-10 09:19:18	系统管理员,	不可编辑	新建
										角色 册除
										无效
										有效
										重置密码
										备注

2.3 用户角色

用户角色: 该功能模块需要有用户管理权限的用户才能操作。用户角色即规定用户以什么 身份操作软件。每个用户只能分配一个角色。在这个界面上可以新建/删除角色,赋予角色权限, 使角色有效或无效,添加备注。角色的权限总共包含六项,这六项权限对应主窗口上六个模块的 功能,分别是:用户管理、项目管理、仪器配置、仪器管理、谱图处理和谱图校正。Administrator 为软件内置角色,包含上述的六项权限,不可以编辑。

Ⅶ 用户	管理	(Admin)						×
个人信	息用	户信息 用户角	色					
	选择	角色名	权限	状态	创建时间	创建者	备注]
•		administrator	用项目管理的保留。 用项目管理管理管理管理管理管理管理管理管理管理管理管理管理管理管理管理管理管理管理	有效	2015-10-10 09:33:14	System	管理员, 不可编辑	权限 新建
			HE BOOKLE					删除
								无效
								有效
								备注

一般用户管理的步骤如下:

● 建立角色(如果使用 Administrator 的角色,可以不用新建)

● 新建用户,编辑用户名、密码、选择角色。

● 如果想要修改该用户的密码,需要以该用户的身份登录到"用户管理"模块,然后在个 人信息里修改密码

第三节 项目管理

项目是方法、结果、自定义字段、视图筛选器和原始数据的集合,由用户定义。项目的目的 是为了方便用户归类、管理、检索相应的数据,在每次实验开始前用户必须先新建或者选择一个 项目。

项目管理包括两个部分:我的项目和用户项目。项目管理用于项目的新建、查看、编辑、操作。"我的项目"显示的是当前登录本人所创建的项目,而"用户项目"则显示所有用户共同创建的项目。"我的项目"和"用户项目"两个窗口编辑在形态分布上完全一致,大部分功能与操

作也一致,只是在"用户项目"窗口的编辑操作区增加了两项功能按键,分别是"备份"、"还原"。

项目管理的界面可以划分为四个部分: ①项目结构层次区、②选择显示项目区、③项目显

示区和④编辑操作区。

Щ 项目管理(Admin)										
我的项目 用户项目										
😑 🔄 项目管理		选择	項目組	项目	状态	公开	审计	创建者	创建时间	
- 🗀 无项目组	۲			Default	开始	完全	否	Admin	2015-10-10 09:19:24	查看
										编辑
0					ด					操作
-					Ŭ					電け渡線
										#FFTA22#F
										0
显示项目										
♥ 开始										
♥ 雪浮 29										
□放弃										
										_

①项目结构层次区

位于项目管理窗口的左上部,树状结构区。在此对话框内,用户可以选择项目位于根目录中 (这些项目会防止在"无项目组"文件夹下),还是作为项目结构层次中的一部分(作为父项目 中的一个子项目),这种层次结构允许您将多个项目组织在一个公用项目结构中。单击项目文件 夹可以重命名该项目文件夹,双击项目文件夹可以将项目文件夹下项目载入到项目显示区。右键 点击一个父项目文件夹,会弹出下拉菜单,方便用户新建、删除、剪切、黏贴项目文件夹。

新建:在当前项目文件夹下新建子项目文件夹。

删除:删除当前项目,但是当前父项目里包含子项目的时候不可以删除。

剪切、黏贴:选择一个项目文件夹点击"剪切",当前文件夹就可以从当前状态剪切,并可以选择黏贴到其他项目的下面,作为其他项目的子项目

2选择显示状态区

位于项目管理窗口的左下部,树形结构区的正下方。项目有"开始"、"暂停"、"完成"、 "放弃"四个状态,根据用户选择不同的项目状态,可以根据项目状态选择显示在项目显示区;

❸项目显示区

位于项目管理窗口的中间,选中结构层次区的文件夹,双击鼠标左键可以将该文件下的项目 载入到项目显示区显示出来。在该区域中用户可以直观看到该项目文件夹下包含的项目,以及与 项目相关的项目名称、状态、公开、审计、创建者等信息。

④项目编辑操作区

位于项目管理窗口的右侧。用户根据不同角色权限对项目进行操作。 我的项目:登录用户可以在我的项目中进行以下操作: 查看 选择一个项目,点击"查看"出现下面的对话框,详细记录了项目信息。

题件 | 项目, 点田 查看 田苑 | 面的村田裡, 叶油记录] 项目旧志

項目:异亮氯酸检测						
项目信息						
项目组: 氨基	酸		项目公:	开: 不完全	审计追踪:	是
创建者: Admi	n		田白	修改进图	配置IC	
项目描述·					序列SS 处理MTD	
SA HI JEAN .						
异亮氨酸检测						
操作时间	内容	操作者	备注	🖭 🖂 🛄 IC		
2015-8-12 9:14:20	开始	Admin				
2015-8-12 14:56:0	編辑	Admin				
				E SST		
				滴定		

窗口的上半部分记录了项目名、创建者、项目描述、公开范围以及在该项目中软件针对那些 模块进行审计追踪。这些内容都是项目在创建时或在运行过程中,用户自行设置、编辑修改。下 面两个方框,左侧方框记录了用户对项目的操作记录,右侧的方框内记录了用户在项目在采集样 品、处理谱图、校正谱图等一系列操作过程中新建保存的仪器配置、序列、处理方法以及谱图等 等。针对各文件夹下的内容,用户可以双击打开,进行查看,也可以设置某一路径将其导出。

编辑

选择一个项目,点击"编辑"出现下面的对话框。

编辑项目	X
父项目:	设置
创建者:	Admin
项目名:	Default
项目描述:	
☑ 公开	
	用户 修改谱图 >
 □ 审计追踪 □ 仪器操作 □ 配置IC □ 序列SS □ 处理MTD □ 谱图CDF 	
	确定

编辑项目主要是对项目名称、项目描述、公开、审计追踪四项类目的编辑。下面表格,从 上往下依次可以编辑项目名、项目描述、公开和审计追踪。

项目公开:系统可以设置部分公开"**公**开"和全面公开"**义**公开"。公开的设置包含两部分内容:一、是否具有操作该项项目的权限,二、具有该权限后,能否修改谱图积分。

A) 部分公开: 公开, 公开前面的方框在没有勾选的状态, 这时候可以自行选择添加公开 用户。登录者通过, 将选择公开的用户添加到右侧的方框内, 即完成了部分用户公开的添加。

部分公开的用户还可以再进一步编辑用户的"修改谱图"权限,通过 键添加到右侧方框内的 用户,如果"修改谱图"栏是勾选的状态,表明该用户可以操作该项目,并且可以修改项目内 谱图的参数设置、手动积分、结果设置等;如果"修改谱图"栏没有勾选,则该用户可以操作 该项目,可以查看项目内所有谱图结果,但不可以操作、修改谱图积分等。 B)全面公开: **2**公开, 当公开前面的方框在勾选的状态, 即表示项目对所有用户公开, 所有用户都可以可以操作该项目, 且可以修改项目内所含谱图的积分。

审计追踪:用户可以根据需要选择实行审计追踪的操作模块。

编辑结束后,点击窗口界面的"确定"按钮,就可以对编辑的内容保存。

操作

选择一个项目,点击"操作"出现下面的对话框。

操作		×
暂停 暂停 完成 放弃	确定	

对"开始"状态的项目可对其进行"暂停"、"完成"或"放弃"; 对"暂停"状态的项目可对其进行"开始"、"完成"或"放弃"; 对"完成"状态的项目可对其进行"开始"或"删除"; 对"放弃"状态的项目可对其进行"删除";

已经编辑为暂停或完成状态的项目都可以重新开始,项目一旦在操作里编辑为放弃,则该项目不能再进行数据采集,而且不能在操作里重新操作为开始。对于不再需要的项目,只有先将项目放弃,然后再删除。

审计追踪

单击"审计追踪"按键,会弹出下图的对话框。审计追踪内容显示窗,是一个类似于 excel 表格。该表格针对项目已经选择的审计追踪模块,以文字的形式对审计追踪的内容记录在该 表格中。单击该对话框"查看",该项目所有操作内容都会记录在左侧的表格中。为方便用户 方便查阅,特地增加了"筛选",主要按照五方面进行筛选方便用户查看,减小检索范围, 分别为仪器操作、配置 IC、序列 SS、处理 MTD、谱图 CDF。"保存"按键,将已经存在于审 计追踪内容显示窗的所有信息,保存到用户自行设定路径的位置,且以 excel 电子表格的形 式存在。

☑ 审计追踪	
项目:异 亮氨酸 检测	()
操作时间 选项 内容 操作者 备注	Ī

选项	×
 ✓ 仪器操作 ✓ 配置IC ✓ 序列SS ✓ 处理MTD ✓ 谱图CDF 	
确定	

新建

新建项目,首先要在项目层次结构中选择创建项目的位置,即选择要创建项目的父项目。选择父项目文件夹,点击"新建"出现"新建项目"对话框。

新建项目	×
父项目:	设置
创建者:	Admin
项目名:	
项目描述:	
☑ 公开	
	用户 修改谱图 >
🗌 审计追踪	
□ 仪器操作 □ 配置IC □ 序列SS □ 处理MTD □ 诸图CDF	
	确定并开始

新建项目的对话框和编辑项目的对话框界面相同。系统默认设置支持"全面审计追踪。 审计追踪将对项目元素(如方法和样品)的所有修改进行记录

提示: 全面审计追踪的功能符合认证的要求

用户项目:拥有项目管理权限的用户可以在用户项目中进行以下操作:

查看(同我的项目)

编辑(同我的项目)

操作(同我的项目)

审计追踪(同我的项目)

备份

项目的"备份"是为了防止用户在操作过程中因操作失误或计算机故障造成数据丢失或损坏,因此事先在源数据存储中独立出来的程序或文件副本。"备份"工具可以帮助保护您的数据免 受意外损失。

还原

项目的"还原",将已备份的文件还原到备份的时候,安全、快速,为用户提供很大方便。

用户点击"还原"按钮后,打开备份文件,项目显示区显示出备份文件中可还原的项目,用户 对待还原的项目进行编辑(如父项目、创建者),点击"确认还原"后,项目还原成功

第四节 仪器配置

用于设置空间站的配置,这些信息都保存在日志里。调用仪器配置钮,仪器配置对话 框就会打开。仪器配置对话框仅允许授权的用户访问。

配置界面,按照内容划分为4部分,分别是当前仪器显示区①、仪器信息显示区②、

系统配置单元区3、仪器配置单元区4。 仪器示区 (左上部):显示已存在的仪器名称、类型、状态。另外可以添加或删除 添加_____按键,即可以添加新的仪器,反之,选中一个已经存在 仪器,单击右侧的 删除 刷新 的仪器,单击 按键,则当前选中的仪器,就会删除。点击刷新按键 可以刷新更新当前的仪器状态,仪器的状态包括三种,分别是未使用、已连接、采集。 如果用户查看当前仪器信息、仪器配置的仪器模块或修改仪器配置模块,可以在仪器 显示区 ① 选中要编辑的仪器,单击右侧" 查看 "按键(或者选中编辑的仪器, 鼠标左键双击)就可以将当前仪器信息、配置情况载入到相应区域。 添加 假设当前已经存在两台仪器,则主窗口显示如下图1,单击添加 按键主窗 口显示就会变成下图 2, 主窗口会实时更新当前仪器。

仪器信息显示区:显示仪器的三部分内容仪器类型、名称、图片。其中类型和图片都 是下拉菜单,可以从下拉菜单里选择,图片也可以点击"自定义"打开自定义图片。 名称可以直接输入,编辑结束后点击仪器配置对话框下面的"确定"键即可以保存。 更改完成后主窗口就会按照更改的名称和图片显示了。

系配置单元区和仪器配置单元区:两个区域的主要作用是:用户可以浏览系统配置 的仪器单元,通过两个区域中间按键,将用户需要的、系统中存在的仪器单元配置到 仪器,单击"确定",仪器配置完成

已经配置到仪器的仪器单元会在系统配置单元名称后面有类似于下图的标示,

"自动进样器<u>一仪器1</u>"表示自动进样器已经配置到仪器1 上了,下面的"泵1"、"泵2"表示没有连接到仪器。

→	添加一个仪器单元
	移除一个仪器单元
	全部添加
	全部移除

第五节 日志

日志窗口的查看,不需要用户登陆,不设权限。日志主要记录了软件的操作内容。方 便用户根据时间、类型、模块以及操作者等,查看软件操作记录,缩小查阅范围。

▋日志			
操作时间 2015-01-01 00:00	0:00 <mark>-</mark> 2015-02-01 00:00:00 \$	料 所有 🗾 模切	ب
対象	操作者	所有 操作 错误	搜索
操作时间 类型	模块 对象 操作者 内容	1	
0条记录			.::

第六节 语言

单击"语言"按键会弹出语言选择框,该窗口不设权限。软件提供了:中文、英文、 日文三种语言,用户可以根据自身需要、喜好,选择语言类型,设置语言后,软件会 重新启动。

第七节 帮助

帮助文档		\mathbf{X}
	<u>操作步骤</u>	
	采集界面	
	<u> </u>	
	确定	

软件根据软件模块和功能将帮助划分为:操作步骤、采集界面、谱图处理、谱图校正 四部分内容,供用户选择查看。

第八节 IQ

安装认证:确认安装文件、部件以及安装过程。通过现场安装、调试以及验证活动,提供一系列实验数据,证明药品稳定性试验箱的安装文件资料和安装条件、安装结果符 合设计要求,资料和文件符合 GMP 要求。

第九节 版本

记录软件的版本和发布日期

第四章 仪器

登陆仪器的主窗口可进行数据采集。仪器窗口可以通过单击仪器图标打开登陆界面, 用户需要填写用户名和密码,点击点确定后,进入"选择项目"界面,在左侧框内选 择父项目文件夹,双击鼠标左键,该项目文件夹下的所有项目即可载入右侧项目栏里, 点击下拉箭头,选择项目。如果该实验不需要项目,可以不选项目,即空项目(软件 默认的为空项目)。点击"确定",进入仪器窗口。

登录		×
		_
用尸名	Admin	•
密码		
	<u>清除</u>	
	登录	

选择项目		\mathbf{X}
□ ● 「□ 元项目组 □ □ 元项目组 □ □ ● 氨基酸	Default	
	确定	取消

标题栏:显示软件的仪器名称+项目名称+用户名 菜单栏:包括文件、仪器、视图、进样、设置、操作六个功能键。 文件:单击文件弹出下拉菜单,弹出新建配制方法和新建进样序列两个功能按键, 方便用户建立配置方法和进样序列。 仪器:主要方便用户退出、切换用户、锁定用户、项目切换。

名称	是否需要先断开 仪器连接	作用
退出	\checkmark	表示用户离开参与的仪器管理活动
切换用户	×	指软件用户账户中存在两个及以上用户,通过"切换用户"可以实现不同用户在仪器管理的活动
锁定用户	×	当前用户在仪器管理窗口单击"锁定用户"后,关闭该窗口,再次登录, 默认该用户,且不可选择、编辑用户
项目切换	\checkmark	实现便捷、安全项目切换的绿色通道,可以不用回到仪器主窗口切换项 目

视图:根据功能将仪器窗口划分为7部分:菜单窗口、样品窗口、控制窗口、数据采集、扫描窗口、信息窗口、消息窗口。通过视图下拉菜单中的按键,切换各个窗口。

设置:主要包括:触发设置、快照保存路径、色谱柱以及溶剂报警设置。触发设置主要用 于 采集盒外部触发采集方式的设置;快照保存路径主要为用户提供快捷保存谱图的通道;色谱柱设置 可以方便用户存储编辑常用的色谱柱信息;溶剂报警方便用户设置一个阀值,当溶剂瓶里的溶剂量 少于等于该值时,泵会自动停泵。

进样: 主要包含序列编辑窗口7个功能按键, 下面会有详细介绍。

操作:包含波长扫描、调零、开始基线测试以及结束基线测试四个按键。

工具快捷栏:工具快捷栏主要包括14个快捷图标,功能如下表

图标	名称	作用
Ø	新建配置方法	单击图标,会弹出"新建配置方法"对话框,一般包括泵、检测器等仪器 单元的控制
9	新建进样序列	编辑进样序列,如果需要也可以将其保存
0	开始进样	开始采集数据
0	结束针	该针停止并保存,且不对其他行/针有影响
0	结束行	该行停止并保存,且不对其他行/针有影响
0	结束序列	保存本次采集,序列排在该行以后的其他样品不采集
	放弃针	如果该行设置采集多针样品,放弃该针则不保存该次采集,其他采集照常
	放弃行	放弃不保存当前行采集的谱图
	放弃序列	放弃不保存当前行采集的谱图,且以后的行也不采集
	色谱柱	储存编辑常用色谱柱信息
8	溶剂警报	设置溶剂低点,放置泵走空
0	调零	基线调零
*	波长扫描	主要包含检测器的波长扫描和能量扫描
~	基线测试	主要为了测试一段时间内仪器的基线噪音和漂移

软件的主界面可以划分为六个视图: ①文件、②进样窗口、③控制窗口、④扫描和数据采 集窗口、⑤信息窗口、⑥消息窗口,下面会分别讲述

第一节 文件

菜単			**	
文件			*	
	IC IC			l
				l
				l
				l
				l
				l
				l
				l
				l
				l
				l
	22	1100.5	0.00	
IC	22	WID	CD1 4 🕨	

文件视图下面有七个可选框,分别是配置 IC、序列 SS、处理 MTD、谱图 CDF、系统适应性 SST、 光谱 WS、校正文件 CAL。选中几个文件可以进行操作。用户在操作项目过程中形成的 IC 文件、 序列 SS、谱图等用户可以根据不同文件类型进行查看、删除、剪切、黏贴等操作。针对数据采 集用的方法文件、数据处理文件,例如 IC 文件、序列 SS、处理 MTD、系统适应性 SST 以及校正 文件 CAL,可以跨项目导入、导出;而采集数据,例如谱图 CDF、光谱 WS,则只能导出,不可以 导入,这种单项导出是为了方便审计追踪,明确谱图的来源。其中导出方法可以分为:单一导出 和整体导出

单一导出是选中一个文件,右键单击,选择"导出",该文件就会按照设定路径导出; 整体导出是选择一个文件夹,右键单击"导出",则该文件夹下的所有文件就会按照设定路径 导出。

第二节 进样序列

VI #	建序列	文件(使用中	י)											×
•	ð X	•	00	00	0	000) 🗍	💿 手动		•				
	选择	状态	打印	打印样式	文件名	IC 文件	MTD 文件	瓶号	重复次数	当前次数	进样体积[11]	分析时间[min]	重量[g]	稀释倍数	
<mark>ا</mark>		等待			Default			1	1	0	20	60			
								保	存	另存为				載入当前	默认

该窗口主要包含了数据采集快捷键区、序列编辑框、采集信息显示区三部分。数据采集按键包含 开始、暂停、放弃,这三个按键是针对序列的;点击视图中间的"Click"手型图标,会弹出序 列编辑的对话框,软件会根据用户配置的进样器的类型,序列编辑窗口也有点差异。下图为软件 配置了自动进样器,序列编辑窗口如下图

♥「新	建序列:	文件(使	用中)									×
0	e ×		00	00					自动		•	
	选择	状态	打印	打印样式	文件名	IC 文件	MTD 文件	瓶号	重复次数	当前次数	进样体积[山]	分析时间
Þ	V	等待			Default			1	1	0	20	60
•					1	I						۴
						保存	5	存为		1	<u>載入当前</u>	默认

新建序列文件窗口也包含:标题栏、工具快捷栏以及序列编辑区三个部分。

标题栏: 文件名+状态

快捷工具栏: 主要包含常用的快捷按键

图标	名称	作用
0	添加	单击"添加"会在序列编辑区的最末尾处,自动添加一行默认状态行
0	复制添加	选中一行序列,单击该键,就会将选中的序列复制添加到序列末尾处
×	删除	选中一行或多行,单击删除,可以将选中行全部删掉
B	插入	选中一行,单击该键,会在该行的上面添加一行默认状态行
0	上移	选中一行(等待状态的),单击改建,可以向上移动该行一次
0	下移	选中一行(等待状态的),单击改建,可以向下移动该行一次
D	开始进样	开始采集数据
0	结束针	该针停止并保存,且不对其他行/针有影响
0	结束行	该行停止并保存,且不对其他行/针有影响
0	结束序列	保存本次采集,序列排在该行以后的其他样品不采集
	放弃针	如果该行设置采集多针样品,放弃该针则不保存该次采集,其他采集照常
	放弃行	放弃不保存当前行采集的谱图
	放弃序列	放弃不保存当前行采集的谱图,且以后的行也不采集
\odot	打印测试	可以用于测试打印可能存在的问题

编辑自动进样器参数、填写样品名称、选择配置方法、谱图处理方法。采集信息显示区显示当前数据采集的相关信息,包括状态、文件名、ic文件、瓶号等。

在 IC 文件编辑框处点击右键,用户可以在此处直接进行新建或编辑。

编辑结束后,根据用户的需要,可以选择保存或另存,也可以不保存。

载入当前:若用户在仪器窗口的工具栏中新建序列或者在文件窗口中查看序列而打开的序列窗口 (不能操作进样),则用户可以通过"载入当前",使当前序列可以进行进样操作,同时,该序列 窗口标题有"(使用中)"来区分该序列为用户当前使用可操作的序列。

第三节 控制窗口

配置到仪器的仪器单元会在该处显示出来,例如:泵、检测器、自动进样器,单击仪器单元图标 会出现一个菜单"连接"、"当前方法"、"显示"。

点击"连接"选项,会弹出连接对话框,选择相应的仪器单元串口号,点击"连接"即可。

通讯设置	X
串口号	COM3 🖌
波特率	9600 💌
校验位	无 🔽
通讯连上后料 请将仪器上到 通讯失败	将停止泵 哀地址设为1, 否则将
连接	断开

"当前方法",即样品采集过程中的 IC 文件,主要包含了泵、检测器、进样器、色谱柱等控制对 话框。总体来说,泵的控制,主要是设置梯度的控制;检测器的控制,主要是设置程序波长扫描; 自动进样器的控制,主要是参数的设置。 另外,对于配置文件中色谱柱的模块,主要是记录的 用途,目的是为了记录用户在采集样品中,采集的样品及谱图结果所对应的色谱柱,方便用户下 次处理相同样品时可以查阅到合适的柱子。为了方便用户填写色谱柱的信息,软件特地在色谱柱 的模块设置了一个"参考信息"按键,方便用户将平时常用的色谱柱信息保存,直接选择,即可 以将信息载入,快捷有效。用户可以在该对话框单击顶部的按键,实现在进样器、泵、检测器等 仪器单元之间的切换,编辑结束后,可以保存。软件在采集数据过程中,当前采集行对应的 IC 文件会自动载入到该窗口,方便用户查看。下面结单介绍泵、检测器的配置文件界面。

泵的配置文件界面

M	() 新建配置文件(使用中)													X
F	动进样器	₽ ₽ ⑦	色谱柱	检测器										
	104-477	175h		147147	从主告下			_		14-472	175h) started		
	选择	る称		沉思	结束停永	単1⊻	茦小压刀	+		选择	名称	1811 	8分吃	
		泵1[111]	Jtv2.10]	1		Mpa 🚩	0	*			汞1 石 0		100	
		9821011	Jtv2.10]	1		Mpa 🚩	U	1	•		5R2		100	
	し し し し し し し し し し し し し し し し し し し													
		时间	泵	1	泵2		流速	_	ml	/min 3	夏月 泉2	度		_
	*													
									L					.min
	梯度图 初始 开始													
									梯度结	束	保持	当前 🔽		
	保存 易存为 载入当蓟 默认													

也可以简单分为四个部分。左上部是泵等度设置区域,即没有梯度时,泵按照此处设置的流速运行,对于四元梯度泵,等度运行时系统默认态运行的通道为A。此处还可以设置最大压力、最小压力,右侧有 MPa,kfg/cm²,bar,psi 四个压力单位可以选择。psi 是每平方英寸多少磅的意思,即 1b/in²

1MPa=10⁶Pa=10.1972kgf/cm²=10bar=145.038psi

1kgf/cm²=9.81 *10⁻²MPa=0.981bar=14.22psi

其他三个区域和梯度设置有关,如果在该处设置了梯度,等度设置区的设置就会无效,一旦 开始,泵就按照梯度的设置运行,也就是软件优先运行梯度设置。泵反控更为人性化的体现在为 用户提供溶剂警报的设置(可以设置也可以不设),主要功能是:设置溶剂报警后,当溶剂瓶里 溶剂的体积小于设置的溶剂警报值时,泵会自动停止(如果在采集样品过程中,样品采集自动结 束,并且保存当前采集数据),从而可以预防泵吸空现象的发生。 设置梯度设置步骤:

第一步:在右上角,泵选择区,编辑溶剂名称、设置比例(主要针对四元泵,单泵比例不用 设置,为100%),另外还包括溶剂警报设置。已选择的泵前面的方框内是处于勾选的状态。

第二步: 在梯度数值编辑区(左下角)编辑梯度数值,右键单击梯度数值编辑区可以"添加"、 "插入"、"删除"。

第三步: 然后梯度设置图(右下角)设置梯度结束后泵的状态: 初始值、保持当前。单击"梯度图"可以查看梯度设置溶剂的比例图。编辑结束后若果需要,可以选择"保存"或"另存"该 ic 配置

检测器的配置文件对话框 检测器的控制主要包括波长设置、程序波长。

☑ 新建配置文件(使用中)		×
新建配置文件(使用中) 手动进祥器 泵 色谱柱 检测器 设置 波长[run] 254 设置 查看 频率	程序波长 时长[min] 波长[nm] 空白值[mAu] 空白	
904年 20 0 进祥结束后关灯 调零	开始 开始 程序结束[波长]	
	保存 另存为 <u>载入当前</u> 默	<u> </u>

程序扫描 用户可以编辑时长(即在该波长停留的时间),波长值介于 190~690nm 之间。 扫描结果在数据采集窗口显示,扫描结果不保存。

色谱柱的配置文件对话框

该对话框是柱子性能参数的设置,例如型号、长度、内径、填充物等等,主要功能是编辑记录的作用。用户编辑色谱柱信息,并用于数据采集,则形成的谱图就会对应该色谱柱,方便用户 查阅,并提供参考价值。

🚺 新建配置文件(使用中)		×
手动进样器 泵 色谱相	生。 检测器	
名称		
型号		
长度[mm]	250	
内径[mm]	0.0	
填充物		
填料粒径[um]	0	
填料孔径[mm]		
温度[℃]	40.0	
参考信息		
L	保存 易存为 载入当前 雷	ŧИ

为了省去用户每次编辑的冗繁,软件提供了"参考信息"按键,单击,出现下面对话框。可以把经常使用的色谱柱信息填写到该对话框中,下次使用相同色谱柱,可以直接选择,单击"确 定"后,自动载入。

M ez	鞋									
0) X									
	选择	名称	型号	长度[mm]	内径[mm]	埴充物	温度[℃]	填料粒径[um]	填料孔径[mm]	
						确定				

第四节 扫描和数据采集窗口

扫描和数据采集窗口可以通过上面的图标"扫描窗口"和"数据采集"进行切换。

4.4.1 数据采集窗口

数据采集窗口有两种曲线:一条是数据采集曲线;一条是泵的压力曲线,数据采集曲线以时间轴-电压值为坐标轴,压力曲线以时间轴-压力值为坐标轴。单击压力曲线单位,可以更换压力 单位,单击右上角的"<压力>"可以隐藏压力曲线。

数据采集窗口的上面有两个调节轴,分别是时间轴调节和信号轴调节,调节轴的右侧有压力单位 更换的下拉菜单。右侧是工具快捷栏。工具快捷栏里面有5个图标:选项、通道、载入谱图、快 照、组分结果,下面分别介绍。

点击出现"选项" **□**图标,弹出"选项"对话框,可对谱图进行设置。该对话框包含两块, "图像"和"项目"。

选项	
图像 项目	
 □ 显示网格 背景颜色 字体 茎线(所有谱图) ✓ 显示 ✓ 显示 ✓ 显示 ✓ 显示 	 峰(当前谱图) 第 组 ● 当前谱图 ● 当前谱图 ● 所有谱图 ● 所有谱图 ● 标号
帮助	应用 关闭

"图像"模块:主要显示更改采集窗口显示、峰的标示等等。

显示网格: 勾该项, 预览时谱图显示网格

背景颜色:点击旁边的颜色框可择想设置的背景颜色。

字体: 点击字体可以选择文字的字体、字形、大小、下划线等等。

基线(所有谱图):择适合的线型作为基线。

显示标识:勾谱图显示峰分割的标识。

峰(当前谱图):只应用在当前谱图,勾则显示这些内容。

组:若谱图分组,显示分组的名称。

组分名: 谱图显示输入的组分名。

面积: 谱图判峰后的峰面积。

高度: 谱图判峰后的峰高度。

保留时间: 识别峰的保留时间。

标号:显示峰个数的编号,第一个峰为1,第二个峰为2,以此类推。

辅助轴:项中未标明"当前谱图"的设置,应用后会对工作站中所谱图(数据采集,校正, 谱图进行设置)。

"项目"模块 主要设置仪器信号颜色,若现在的采集线是黑色的,双击项目中的黑色, 择需要更换的颜色即可改变,同样在谱图中打开多张,选择谱图对应的颜色双击可以设置改变。

"通道"的图标: **3**。针对双通道的采集盒,如果两个通道都配置到该仪器,如果关闭了 通道数据采集窗口或通道,单击该按键,可以使基线恢复。

"载入谱图"图标①: 该功能主要方便用户在采样过程中对比或者参照已经存在的谱图。

当用需要对照以前保存的谱图或查看谱图时,单击"载入谱图"图标①,会弹出一个谱图选择路径的对话框,可以从本地或者项目中打开谱图,极大地开放了用户选择的范围。选择需要的谱图,点"打开"即可将已保存的谱图载入到数据采集对话框内。

快照: ²², 主要是在线数据快捷保存, 也是为用户提供另外一个数据存储通道, 用户不 需要设置保存路径以及保存的文件名, 系统会默认将快照文件默认保存在当前项目的根目录 下,并且系统给予一个文件名。当原数据进行在线应用处理时, 用户可以访问快照数据, 还可 以运用快照进行测试等工作。

为方便用户可以第一时间查看谱图结果,软件可以通过"组分结果" 查看正在采集样品积分结果。首先用户需要在要采集样品的序列中添加适合该样品积分的 MTD 文件,然后在样品采集过程中即可以通过"组分结果"按键查看积分结果。另外右键单击对话框的空白处会弹出下拉式的,可以选择的积分项,单击需要显示的积分项,可以自动添加到对话框。

組分结果					×
通道 🔽	应用方法	噪音:	-1.000mAU, 漂移:		
组分名	保留[min]	峰宽[sec]	面积[mAV.s]	数量	

4.4.2 扫描窗口

扫描窗口主要是用于波长扫描的采集。右侧有两个快捷工具:选项和通道。功能和数据采集窗口相似。另外还有一个"扫描"按键 🚱。

Æ	3描1		数据采集	ŧ										•
0	÷x/	ц o	到	45	Y从	-10	到	130						
0	[mA	U]												
~		120 -												
		100 -												
		80 -												
	B	60 -												
	Ş	40 -												
		20 -												
		0 -												
		0.	0	5.0		10.0		15.0	20.0	25.0	30.0	35.0	40.0	45.0
	0.0	D							Time					fuuni
_	0.00													

扫描: ①, 主要用于检测器吸光度扫描和能量扫描。用户需要编辑开始波长、结束波 长以及选择步长。软件给出了 0.25、0.5、1.0、2.0 四种步长可以从下拉菜单中选择, 另外用 户需要设置扫描谱图的保存路径, 如果用户没有设置或者忘记设置保存路径, 软件会默认保 存在该项目光谱的根目录下。

波长扫描	X
波长[ɪm] 空白值	开始波长190结束波长690步长1
	◎ 吸光度○ 能量
	空白
	开始 保存路径

第五节 信息窗口

显示配置进该仪器的所有仪器单元在运行过程中的状态信息。eg自动进样器会显示当前一 起状态、进样瓶号、进样次数、剩余时间;检测器会显示状态、波长、频率以及氘灯的开关状况; 泵则会显示状态,流量、最大压力、最小压力等。如果仪器是在走梯度的条件下,可以点击右侧 的 6 图标, 会弹出当前所走样品的梯度图。

第六节 消息窗口

主要记录各仪器单元的操作。可以按照操作类型和仪器单元类型,筛选信息内容。对于不需 要的信息,可以清除。

消息窗口				д
所有	▼ 所有		- X	
2015-6-29	13:09:00	[OPE]	〈泵1〉 通讯连接	-
2015-6-29	13:09:00	[OPE]	〈泵1〉停止	E
2015-6-29	13:09:03	[OPE]	〈泵2〉通讯连接	
2015-6-29	13:09:03	[OPE]	〈泵2〉停止	
2015-6-29	13:09:05	[OPE]	〈检测器〉 通讯连接	
2015-6-29	13:09:08	[OPE]	〈泵1〉运行	
2015-6-29	13:09:28	[OPE]	〈泵1〉设置最小压力:O Mpa 最大压力:40 Mpa 单位:Mpa	
2015-6-29	13:09:28	[OPE]	〈泵2〉设置最小压力:O Mpa 最大压力:40 Mpa 单位:Mpa	-

第五章 数据采集与流程处理

Survey 色谱工作站依靠方法组(其中包括仪器方法),将控制和采集参数传递到已配置到色谱 系统中的仪器,例如泵的流量和检测器的波长。它还依靠样品组方法来指定要运行的样品数量和 顺序,每个样品要应用的功能,样品的运行模式,进样前平衡的时间等等。

第一节 方法组

在 Survey 色谱工作站软件中,必须在建立适当的方法组后,才能采集数据方法组是用户定 义的方法和通道的集合,方法组可以包括: 用于采集数据以收集数据的仪器方法(只运行) 用于搜集并处理数据的仪器和处理方法(运行并处理) 用于收集、处理并报告数据的仪器、处理(运行并报告) 用于导出数据的 MTD 和 CAL 文件导出方法 对于不同的方法类型的详细说明如下: 仪器方法用于指定仪器控制和数据采集参数。如流量和波长。仪器包括泵、溶剂的管理系统、 检测器、自动进样器、样品管理系统和气相色谱仪。可设置仪器方法以执行以下任务: 采集数据 设置初始条件以平衡系统 平衡色谱柱 清洗自动进样器管路和检测器流动池 样品组方法包括一组函数和相关信息,用于指定从一组样品中的每个样品瓶(标准样或未知样) 采集数据的参数。 提示:如果每天运行同一类型的样品,则可以创建一个样品组,这样每次运行时只需修改其中

具有新样品名的样品。

处理方法包括一组指令,用于定义 Survey 色谱工作站如何对来自 2D 通道或 3D 通道的数据进行处理。可选择使用传统积分处理数据。处理方法用于执行以下任务:

通过确定每个峰的峰开始和峰结束这种传统积分方法对峰积分

1. 定义软件如何校正标准样和定量未知样

- 2.校正标准样并未色谱中每个组分生成校正曲线和结果
- 3.定义被校正组分的组分含量和浓度

4.为测试定义系统适应性计算,并为每个组分定义允许值范围

5.定义 PDA 处理参数以生成峰纯度和谱库匹配结果,定义色谱匹配处理参数,将选定的 2D 色 谱指定为色谱匹配参比,并启用色谱匹配处理

6.计算检测器噪音和漂移参数

报告方法作为生成的报告中组织数据、结果、校正曲线及方法内容的模板。报告方 法与报告包含的任何数据无关。报告可包括已处理的或未处理的数据。

提示:可使用单个或综合报告的方法来创建报告。单个报告为每个选定数据类型创 建一个报告。综合报告

则将一组选定数据的信息合并到一个报告中。该报告取决于要报告的数据。可用不同的报告方法组合相同的数据已创建不同的报告。例如一个报告可以包含自己文件所要的信息,另一个报告可以记录法规符合性信息并设定其格式。

导出方法指定要用于导出数据的数据文件格式。已处理或未处理的数据均可以导出。文件格式包括 IC、SS、MTD、CDF 或 WS。

第二节 数据采集与处理流程

对样品的结果处理和报告可以通过两种方式进行

方法 A, 先建立方法组再进样, 由系统自动进行结果处理和报告等操作

方法 B,先建立方法组中的仪器方法,然后进样,再在所得的结果基础上,建立处理结果、报告方法等,计算出结果,打印报告

方法 A 具体流程

这种方法的逻辑关系比较明确,非常容易理解,适用于进行重复大量分析的实验室, 例如质量控制(QC)实验室。

方法 B 具体流程

方法 B 的关键在于不是一下子建立好所有方法,而是逐步建立起方法组中的各个 方法。但对于一些研究性的实验室,由于在开始分析的时候,对被分析的样品产生的 结果还不了解,无法预先设定好所有所有方法。在这种情况下,就可以采用方法 B 中 的流程。

注意:以下我们都将会按照方法 B 的流程进行相关的介绍。如果你需要按照方法 A 的流程进行工作,只需参照后面的介绍,在运行样品前建立好所有的方法即可。

5.2.1 数据采集

登陆到仪器主窗口可以完成下列任务:控制仪器、更改仪器参数以及将更改保存到 仪器方法中,监视基线并查看数据(波长或光谱)的实时图,加载样品(单个样品或样 品组)

从单一进样或样品组采集数据,打印预览谱图。

5.2.2 运行单一样品或样品组

单一运行样品

可以一次进行一个样品的进样和数据采集。通常在需要迅速分析样品时执行此操 作,等到系统达到平衡状态,终止观察基线,编辑样品名称,选择对应的方法组,确定 运行时间。如果是自动进样器,则同时需要选定样品瓶号与进样体积,然后在空闲时点 击"开始",样品运行开始

建议您在使用手动进样方式的时候,也如实填写进样体积,一旦所有采集参数被设定,点击"开始"键,开始采集数据,进样时状态条也会做出提示,色谱数据被采集,并显示在"实时"图中,如果不知道运行时间,第一次运行时间应设长一些,如填 30min,进样确认后第二针时再改回合适的运行时间,以确保数据采集的有效性。如果是手动进样器,要注意采集界面下方的系 统状态条显示为空闲时,才可以扳动手动进样阀开始进样。

如果需要采集数据的同时,查看采集数据,可以单击"组分结果"图标,来进行具体结果的查看,也可以通过"快照"功能键,将图谱快捷保存,离线查看,不影响在线数据采集。 如果需要终止数据采集,可以点击进样控制窗口的"停止"或"放弃"

样品组运行样品

多个样品采集数据时,可使用一组条件或指令(称为样品组)。这些条件和指令可以 如何及何时从样品瓶组的每个样品瓶采集数据。样品可包括用于校正的标准样和未知样。 采集数据前必须定义样品组。方法是指定样品数量和顺序、要在样品上执行的功能、方 法组以及样品组中每个样品的运行时间。对于整个样品组必须指定必须指定运行设置, 是否在运行样品组前暂停采集。如果希望再次使用该样品组,可将其保存为样品组方法。

5.2.3 样品运行步骤

7 用户管理、项目管理。确认实验用户,是否以 Admin 身份登录或是新建用户。如果运行的样品需要项目,则先建立项目(如果项目已存在,该步骤可以跳过);不需要则可以选择空项目。

2 单击主窗口上的仪器配置模块,弹出仪器配置对话框,配置需要的仪器单元。

3 点击仪器主窗口的仪器图片,弹出"登陆"对话框,编辑用户名和密码,点击"确定",弹出"选择项目"界面,可以选择已创建的项目,如果样品没有项目要求,可以选择空项目。

4 登陆到"数据采集"主界面,连接仪器单元,弹出"通讯设置"对话框,选择对 应仪器的串口号,点击"连接"。

5新建配置 IC、序列 SS、处理 MTD (如果有方法组的条件下,可以单击根目录, 会弹出"载入"、"刷新"下拉菜单,单击"载入",选择需要的配置文件或谱图,载入到 当前项目配置文件里)。 6采集样品。单击进样窗口的手装图标,弹出"新序列"编辑框,编辑自动进样器的参数、文件名、配置,文件、选择瓶号、清洗方式...编辑结束后,开始进样。

7打印报告。如果期望样品运行结束后可以自动打印报告,可以在序列编辑框处勾选"报告",软件就会在样品运行结束后在动打印报告。

第六章 图谱处理

数据采集完毕,可在谱图处理处打开采集的谱图,Survey色谱工作站会自动对谱图判峰。 点击主窗口右上角的"谱图处理"图标:

进入图谱处理界面:

ANNA MENA DE ANTRES NO 244 DAMES DIVES DE ANA DECAS	
· · · · · · · · · · · · · · · · · · ·	
从feinal 0 到fainal 45 从 -10 到 130 免疫 パペ	
[m4o] 127 [m4o]. 313	(ris)
120-	
183 -	
8-	
5 61-	
⁵ 4)-	
20-	
6-	
ala sia sala sisa ada asia ada wila si	45.0
Title	[ais]
2019 10度 2049 10日 - 10月27日 立大師内() 注意改善 - 10月27日 - 10月27日 - 10月27日 - 10月27日 - 10月27日 - 10月27日 - 10月27日 - 10月27日 - 10月27日 - 10月27	_
(sec) (mill) (mill.a) (mil) (mill.(sec) (Million) (Mill.	
0.0 1.00 10.000 0.10 0.000 0 -10.000 写入	
1 0.00 0.00 0.0 1.00 10.00 0 -10.000	
「住用が法則 工な時間	
PCas	

我们依次从上往下,从左往右依次介绍。

第一节 文件

重叠模式:选择该按键,可以同时打开多张谱图,否则只能打开一张谱图。

谱图浏览:选择该按钮,左侧显示电脑的文件目录,可直接查看保存谱图的文件夹,相应的谱图 就在下面的表格中显示,双击文件名就可以打开谱图。

打开:打开所需要的谱图文件,共有三种格式供选择,谱图*.cdf(工作站自身的或相同格式的谱图)及谱图*.dat(N2000 格式的谱图)和谱图*.ws(光谱文件),接下来选择图谱存的地方,"本地"是指存储在本电脑磁盘里,"项目"是存储在所建的项目下。

关闭所有图谱:关闭所打开的所有谱图。

保存:保存仅保存 Survey 色谱工作站生成的*.cdf 格式谱图,如果要保存其它工作站的谱图应选择另存。

另存 保存其它工作站*.cdf 格式的谱图或 N2000 *.dat 的谱图

导出 可导出信号文本(*.TXT)、中药指纹(*.TXT)、图像(*.wmf)。导出的文件都在 export 文件夹中,

信号文本(*.TXT):数据以TXT文本形式导出,包括时间点和信号值

中药指纹(*.TXT):此*.TXT 文件的导出的目的是为了导入中药色谱指纹图谱相似度评价系统。 通过中药指纹(*.TXT)导出的 TXT 文件可以直接在中药色谱指纹相似度评价系统中的 A 中打开。 如果想在中药色谱指纹图谱相似度评价系统的 B 中打开,需先在 A 中将其导出为对照谱图文件 (*.SCP),之后就可以在系统 B 中打开了。

图像(*.wmf):在导出谱图的同时,可以将谱图输出到 Word 和 Excel 中,即导出谱图之后,打开 Word 粘贴即可。每次导出的图像文件都会被下次导出的图像文件覆盖,所以导出之后请及时保存 到其他文件处。

打印设置:

页面:设置谱图的字体,谱图大小,页面大小等。若在图案处择了图案,预览时就会在报告的上 方显示,但是图案的尺寸需符合。

谱图:设置要打印的内容,如要打印,则勾选此项内容

完全显示:显示谱图的全局,包括最高峰。

第2峰高显示:以谱图的第2个峰高为最高峰显示,此时最高峰显示不全。

当前显示:手动在谱图界面调节成什么状态就以此状态显示在报告中。

其它:对合并结果,总结和光谱标题的设置及要显示的内容的勾选。

校正:对校正标题的设置及要要显示内容的勾选。

新建:新建一个打印设置方法。

打开:打开一个以前保存过的打印设置的方法文件。

保存:对当前打印设置方法的保存。

另存为:将当前打印设置方法另存为一个方法文件。

确定:确定当前的设置。

取消:取消当前的设置。

打印机:打印当前内容。

退出:退出图谱处理窗口

第二节 查看

置顶: 勾选后工作站页面会一直在所有页面的前方。

版本: Survey 色谱工作站在普通版本和 TVOC 版本的选择。

选项:

≁ 选项			≁ 选项		$\overline{\mathbf{x}}$
图像项目			图像项目		
	峰(当前谱图)	補助轴		颜色优先次序	
	✓ 组	 ● 当則 "借函 ○ 所有 逆図 		1	
背景颜色	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□			3	
字体	 高度			4	
→基线(所有谱图)	☑ 保留时间			6	
☑ 显示	✓ 你亏			7	
				8	
☑ 显示标识				10	
				11	2
帮助	应用	关闭	帮助	应用 关闭	

图像

显示网格: 勾该项, 预览时谱图显示网格。

背景颜色:点击旁边的颜色框可择想设置的背景颜色。

字体:点击旁边的颜色框可择想设置的背景颜色。

基线:选择合适的线型作为基线。

显示标识:勾选谱图显示峰分割的标识。

峰: 只应用在当前谱图, 勾则显示这些内容。

组:若谱图分组,显示分组的名称。

组分名: 谱图显示输入的组分名。

面积: 谱图判峰后的峰面积。

高度: 谱图判峰后的峰高度。

保留时间: 识别峰的保留时间。

标号:显示峰个数的编号,第一个峰为1,第二个峰为2,以此类推。

辅助轴:选择辅助轴应用于当前谱图还是所有所用谱图。

项目: 主要设置谱图的颜色顺序, 同时打开多张谱图, 谱图会按照设置的颜色顺序出现。

帮助:点击会出现 Survey 色谱工作站操作说明书。

快捷图标介绍:

预览和打印当前图谱

计算方式: 有美国, 欧洲和日本三个标准, 选择不同的标准, 峰宽, 塔板数和分离度计算方式

不同。

: 在本地或项目中查找光谱谱图并打开。

谱图:

节。

方法:

方法下面有划分为"全局参数"、"手动积分"积分、"结果设置"三项

全局参数: 全局参数主要显示全局积分参数的设置和局部积分参数的更改设置

方法	结果	效率 信息								
全局	全局参数 手动积分 结果设置									
	峰宽 [sec]	峰高 [mAu]	最小面积 [mAu.s]	锁定时间 [min]	自动峰) [min]	宽 漂 [;] [uAU/	移 f /min])峰阈值 [mAu]		
	0.0	1.00	10.000	0.10	0.000) () -	10.000		
	时间A [min]	时间B [min]	峰宽 [sec]	峰高 [mAu]	最小面积 [mAu.s]	漂移 [uAU/min]	负峰阈值 [mAu]	锁定	拖尾	保持
1	0.00	0.00	0.0	1.00	10.000	0	-10.000			

手动积分:

1	添加正峰	在选定范围内添加正
		待添加峰 添加结果
\checkmark	添加负峰	在选定范围内添加负峰,虚拟基线按终点信号连接。
		3 2.887
*	删除峰	删除一个或多个峰,选择删除的峰时,要把峰的开始结束点完全包含在内。
		待删除蜂 删除结果 2.652 3.122 2.652 4 5 3.748 4 3.748
	分割峰	将一个峰分割为两个峰。在需分割处单击。

A	移动谷点	在某一范围内添加谷点或改变原来的谷底位置
A	经过谷点	使基线经过谷点,调整峰(组)为单峰。
⊿	整合基线	整合基线,调整峰(组)为重叠峰。
\triangle	尾切	设置选定的峰(组)为前面峰的"后肩切峰",要求肩切部分全选。
Ъ	前向水平	调整峰(组)基线向前水平

	基线向后 水平	
经	添加组	点击该按钮,选择一个或多个连续的峰,在出来的添加对话框的值中输入
		组名(工作站默认的值是"abc"),选择的峰将分为同一组。若要将几个不
		连续的峰分组,选择第一个峰并命名组名后,再点击该按钮选择第二个峰,
		并将组名命名为上一个相同,这样两个峰就分为同一组,以此类推。分组
		的结果将在(整合)结果处显示,可计算该组所占的面积,高度百分比等。
N	噪音	噪音评估,在谱图中选择噪音部分,噪音值会在下方显示。
D H	漂移	漂移评估,在谱图中选择漂移的时间段,飘移的值在下方显示。

结果设置:

全局参数 手动积分 校正文件	→ 括果设置 × ×	效率 死时间[min] 4 林长[mm] 250	当前谱图的方法 默认 导入
 结果样式 □ 隐藏内标峰 ● 检测峰 ○ 识别峰 ○ 校正峰 			导出
 ✓ 使用缩放因子 因子 单位 	未识别峰 响应类型 Area ✔ 因子 1 [Amt/Resp]		应用方法到 其它谱图

校正文件:点击空格处选择校正文件(校正文件在校正中制作),点击右侧的还钮可删除校正文件。在下面的计算中,可择内标法或者外标法。ESTD 是外标法,ISTD 是内标法。

结果样式:

隐藏内标峰:如果择的校正文件是内标方程,择该项后可以隐藏内标峰。

检测峰:默认该项, 谱图中所峰都在结果表中显示。

识别峰:添加校正文件后,显示校正文件中识别的峰。

校正峰: 添加校正文件后,显示校正文件中校正的峰。

使用缩放因子:同未识别峰的因子,单位,输入的单位会在浓度处显示。

未识别峰:若没择校正文件,此时的浓度由此处决定显示,响应处面积,高度和√面积(更号面积项,若响应是面积,则浓度值显示的是面积值,若择高度则显示高度值。下面的

因子为1,则值为原来的1倍,若输入2,则值为原来的2倍。如响应为面积,因子是2,此时 浓度显示面积的2倍值。因子输入后回车确认。

死时间:设置系统的死时间

色谱柱:设置色谱柱的长度。

默认:默认软件预存的图谱处理方法

导入:导入以前保存过的方法

导出:导出当前图谱的方法,存为一个文件。

应用方法到其它图谱:在重叠模式下,将当前谱图的方法应用到其它图谱。

结果:

点击谱图上的峰,结果表处就会跳至对应的峰所在行。噪音和漂移在结果表的上方显示。下方是

表

结果

结 果 显 示

噪音: 1uAU, 漂移: 210uAU/hr

	组分名	保留时间 [min]	峰宽 [sec]	面积 [mAu.s]	面积 [%]	高度 [mAu]	高度 [%]	数量 [%]
1		2.690	8.6	1010.848	26.10	193.566	40.97	26.10
2		6.659	14.1	31.723	0.82	3.761	0.80	0.82
3		7.753	13.8	547.134	14.13	64.368	13.62	14.13
4		10.168	17.6	2283.627	58.96	210.810	44.62	58.96
	合计			3873.332	100.00	472.504	100.00	100.00

显示表右键列设置可选择需要显示的内容,其中面积【%】,高度【%】计算了各峰占所有谱图的 面积或高度百分含量,相当于归一法。

右键——列设置

显示列	设置			×
	显示	列名	格式	^
1		组分名		
2		峰类型		
3	V	保留时间[min]	0.000	
4	V	峰宽[sec]	0.0	
5		半峰宽[sec]	0.0	
6	 Image: A set of the set of the	面积[mAu.s]		
7	×	面积[%]	0.00	=
8	Image: A start of the start	高度[mAu]		-
9	V	高度[%]	0.00	
10		信噪比	0	
11		数量[-]		
12	Image: A start of the start	数量[%]	0.00	
13		自定义1		
14		自定义2		
15		自定义3		
10		660x		
		确认	取消	
可拖曳	选中的征	亍重排序		

这里有四个自定义选项,选择之后,在结果栏处会出现一列空白的自定义列,此列可自己定义计 算公式。

效率

包含了一些峰性能参数的表格,此处计算都按照欧洲药典(EP)50%峰宽计算。非峰保留时间和 柱长可根据实际情况调节,响应的值也会改变,如柱效/L项和分离度等。

	组分名	保留时间 [min]	半峰宽 [sec]	拖尾因子	容量因子	塔板数 [th.pl]	柱效/L [t.p./m]	理论塔板 高度	分离度
1		2.684	4.661	1.310	-0.329	6624.907	26499.630	0.038	
2		6.642	8.791	0.965	0.660	11403.850	45615.390	0.022	20.828
3		7.738	7.776	1.076	0.934	19784.400	79137.590	0.013	4.683
4		10.142	9.943	1.051	1.535	20787.010	83148.040	0.012	9.607

表

格处右键列设置可选择显示的项

显示列	设置		
	显示	列名	格式
1		组分名	
2	 Image: A start of the start of	保留时间[min]	
3	 Image: A set of the set of the	半峰宽[sec]	
4	V	拖尾因子	
5	 Image: A start of the start of	容量因子	
6	 Image: A set of the set of the	塔板数[th.pl]	
7	~	柱效/L[t.p./m]	
8	V	理论塔板高度	
9	V	分离度	
可拖曳	选中的征	确认	取消

信息

主要包括属性和仪器配置。此处的仪器配置即采集时设置的仪器配置文件的内容。显示了数据采 集的信息,分析员,进样时间,样品 ID,仪器配置文件等,此处不可更改,所以在采集之前请确 定所有信息是否填写完整。

总结

打开两张或两张以上的谱图时,将每张谱图的同一组分输入相同组分名,或在结果设置处均加载 校正文件,总结处就会自动计算同一组分的均值,标准偏差及%RSD等。

谱图	谱图					
			過辛	a	а	
	谱图名	进样数量	™#∎ [mAu]	保留时间 [min]	面积 [mAu.s]	
1	s1	1.000	0.001	10.168	2283.627	
2	s1 (2)	1.000	0.001	10.158	2286.226	
	均值	1.000	0.001	10.163	2284.927	
	标准偏差	0.000	0.000	0.007	1.838	
	相对标准偏差	0.000	1.380	0.070	0.080	

系统适应性

系统适应性模块式为了验证一个基于色谱评价的色谱系统。使用该功能需在所有打开的谱图结果设置处加载校正文件。组分将从校正文件中刷新,勾选使用,设置上下线查看结果。

谱图	泡	结	系统适应性	光谱						
	使用	校	组分名		保留时间 [min]		验	谱图名	保留时间 [min]	面积 [mAu.s]
1		\checkmark	а		10.168			上网	灵: 12.000	2400.000
								下降	홋: 10.000	2200.000
								RSD%	6:	
								技	值 10.157	2286.386
								RSD[⁴	%] 0.107	0.124
								参数结	果 √	√
						1	_ √	s1	10.168	2283.627
						2	√	s1 (2)	10.158	2286.226
						3	_√	s1 (3)	10.146	2289.306

在左侧空白处右键, 会出现一个菜单

新建	重新制作系统适应性,所有数据清空。
打开	打开之前保存的*•sst 文件。
保存	保存完成的*•sst 文件,工作站默认保存在 Data 文件夹里。
另存	另存*•sst文件。
从校正(文件)刷新	谱图添加校正曲线后,组分从校正文件刷新。

在右侧表格右键

列设置	设置参数列显示的内容。
清除参数	清楚当前所选组分的参数。

在谱图图像处打开谱图,若要打开多张,需先选择多谱图模式 **重叠模式**按钮,在结果的校正 文件处添加对应的校正文件。进入系统适应性界面,在左侧空白处右键选择最后一个"从校正(文 件)刷新",出现校正文件中的组分、参数、谱图名称,当前选择哪个组分,谱图处显示相应组分 的参数,勾选组分名前的使用,输入个参数的上下限值,与RSD%的限定值,工作站会对谱图进 行计算并判断。上限下限是对均值的判断,RSD%是对谱图下面谱图参数 RSD%的限值,红色的 值表示超出限制,蓝色的字表示未给定限制未判断,正常的是黑色。

?	选择的组分并未输入任何数值,待编辑。		
\checkmark	所有参数均符合,均在范围之内。		

x	参数超过给定限值,	不符。

注: 若未添加校正文件,刷新后左下角会有"无可使用的校正文件"的提示。(软件上还没有做) 制作完毕,在左侧表格处右键保存或另存该*.sst文件。

光谱

- 🔍 后退 相当于撤销的
- 🔍 前进
- 打开光谱图
- ▶ 关闭光谱图

灵敏度 灵敏度的数值可以通过 🗊 更改。

第七章 校正曲线制作

在谱图处理处理完谱图,即可制作校正曲线,校正曲线是数据处理的重点,是将标样谱

图的信息与数据做成一个标准,供处理试样谱图使用。点击主窗口左上角的"谱图校正"图标即 可进入。

栏有文件、校正、查看和帮助四个按键。各个选项对应有不同的功能。

第一节 文件

新建	5	新建校正曲线。重新制作校正文件。
打开	1	打开之前做的校正文件。
保存		保存制作完成的校正文件。
另存		将制作的校正文件另存。
打开标样	2	打开制作校正曲线的标样谱图。
关闭标样	×	关闭打开的标样谱图。
预览	0	预览制作的校正曲线。
打印		打印校正曲线。
打印设置		主要是对报告格式的设置包括打印设置、谱图和其它。其主要功能为设
		置报告页面设置、选择报告谱图显示内容
页面设置		设置报告的纸张大小、方向以及页边距
退出		退出校正窗口。

第二节 校正

添加全部组分 😨 打开一张标样谱图,添加谱图上的全部组分。		打开一张标样谱图,添加谱图上的全部组分。
添加已有组分 🏼 🕍 在已添加峰的基础上添加已添加的组织		在已添加峰的基础上添加已添加的组分。
选择组分 🎽 组分单个添加,选择该图标然后点击需添加组分。		组分单个添加,选择该图标然后点击需添加组分。
		单击,弹出一个自定义计算对话框,包含四个自定义列,单击任意一
自定义计算		个,会出现自定义列表达式的计算公式编辑框。按"确认"键确定输
		入。

第三节 查看

选择其中某一个,就会在前面打上勾

置顶	当前仪器窗口永远在最上面
语言	有有中文版和英文版两个版本可以选择
选项	用于"谱图"项显示设置

点按"帮助"键,或点按F1,软件会打开软件自带的说明书

工具快捷栏

所有的选择的是制作标准曲线时添加峰的按钮,在菜单栏的校正中有介绍。

可以调节横坐标的单位。 校正点: 1 词节谱图级别,调整校正点组分表显示所对应校正点 的谱图响应值等信息。对应组分表中的校正点选项。

校正体系总计 20 级即 20 个校正点,即各组分最多可有 20 个校正点,也即一个组份最多可有 20 个校正点。

第四节 组分表

组分名按照保留时间来排序。在表格处右键出现下拉菜单

列设置
默认列设置
清除校正点
删除校正点
删除所有校正点
删除组分

单击"列设置",进入"显示列设置"对话框,可在需要显示的列名前打上勾。格式列有"0.000"

0

的内容是数字,可以调节显示的小数点位数

	显示列	设置				
		显示	列名	格式		
	1		使用			
l	2	 Image: A set of the set of the	组分名			
l	3	 Image: A set of the set of the	保留时间[min]			
	4	 Image: A set of the set of the	左窗宽[min]			
	5	 Image: A start of the start of	右窗宽[min]			
	6	 Image: A set of the set of the	内标			
	7	 Image: A start of the start of	响应类型			
l	8		数量类型			
ł	9		自由系数			
I	10	 Image: A set of the set of the	{校正点}			
	确认 取消 可拖曳选中的行重排序					

使用	在使用框内打钩,表示选择使用了这个组分
组分名	输入保留时间对应的组分名,利于分辨
保留 [min]	显示保留时间,不可修改
左窗宽[min]	调节峰的左右窗宽,打开谱图添加己有组分,相应值为0,这种情况下
右窗宽[min]	न्

	以适当调节左右峰宽,使保留时间在范围内							
内标	双击内标列,可以选择内标物							
响应类型	响应值响应的类型,单击切换面积,高度,更号面积,							
数量类型								
自由系数	设置自由曲线类型为自由时有用。							
{校正点}	显示当前校正点的响应,浓度,记录的内容。							

单击"默认列设置",组分表显示的项恢复到默认设置状态。

清楚校正点	清楚当前校正点个组分的响应记录值。
删除校正点	清楚校正点的组分的响应校正值。
删除全部校正点	清楚所有校正点的组分的响应校正值。
删除组分	在组分表中,选择需删除的组分,点击该项删除选定组分。

第五节 校正曲线制作

校正是通过分析指定的准备好的标准样品,来确定计算绝对组分浓度的响应因子的过程。 记录:同一浓度的标准样品平行进样次数

校正点:由一个校准不同样品浓度的校准点组成

标准样品:也叫做标准样品或标准混合物,是含有定量的已知数量的化合物样品

标准品也可以从国家标准试剂供应商处买到

校正曲线:是由一个或多个标准样品获得的化合物数量和响应数据间的图形表示

7.5.1 外标法

打开**打开标样**第一张谱图,,如校正标样1,点击添加全部峰所有的,然后点击添加校正点,校正 点的添加有两种方式,一种是"已有组分"(通过"添加全部峰"按键添加进来的峰都是已有组分); 另外一种是选择组分(在谱图上单击已添加进来组分对应的峰,然后点击"选择组分",即可以峰 的"响应"、"数量"、"重复"数值载入进去)。输入组分名,并在响应类型列切换校正的响应类型, 面积,高度或更号面积,然后在浓度列输入对应组分的浓度。然后打开第二张谱图校正标样2,

调整校正点为2 校正点: 2 , 第一张谱图可以关闭 关闭标样,也可以保留,点击添加已有
峰 三有组分 ,浓度列输入对应组分的浓度。此时如果某个组分的响应值为0,观察第二张谱图的保留时间是否在第一张谱图保留时间的左右窗宽范围之内,适当调节左有窗宽即可。然后再打开 谱图校正标样3,调整校正点为3,添加已有峰,浓度列输入对应组分的浓度;同理依次添加校正
点击组分列表边的组分名————————————————————————————————————
啊应; 亚尔珀定仪正点时响应值,响应以组力状起并时响应天主亚尔。
数量:组分的浓度,可在组分表输入,也可在此输入,浓度单位可通过 ^{数量} 更改。
计算值: 浓度在计算式中的值。
背离: 计算值与浓度的背离。(计算值-浓度)/浓度*100%
重复:同一校正点加入值的次数记录。
使用: 勾选表示使用该点,曲线中显示"×",若没有选择,以" ^〇 "表示。
响应类型: 组分表选择的响应类型。
曲线类型:在下拉菜单中选择曲线类型。
原点方案: 有忽略,加入,经过三种。
忽略,忽略原点(0,0)
加入,把原点也记为一个点,此种方案在只有一个数据点时采用。
经过,曲线经过原点,强制过 0。
做完校正曲线,下方会显示曲线方程,相关系数以及残余。
残余 :响应值与实际值的差的平方的平均开更号。

	校正:									×
<u>ک</u>	(件 校正 :	查看 帮助								
۲ ۳	🤯 💋 🛯 健 打开 保		¥ 关闭标样	添加所有组		公加选择组		添加 校正点		笡
	响应	数量:g/l	计算值	背离	重复	使用	^	mAu.s	a - 10.168 min	7
1	2283.627	1.000	1.010	1.010	1			7000		
2	4542.331	2.000	2.009	0.459	1					
3	6760.922	3.000	2.991	-0.316	1			6000		
4								6000		
6						H				
7						H		5000		
8										
9									*	
10								4000		
11								ouse		
12								espo		
$\frac{13}{14}$								⁶⁶ 3000		
14										
							~		*	
uća u	oct 3/6 弗山	Area						2000		
()	日天王	Origin								
т. Ф.	上して上	Linear	~					1000		
Щ; Г		Linear								
県,	品关型	Pass	*							
相	关系数 ^{-9e3X}	0.9998591	1					0]
残:	余	21.69629	mAu.s					0	0 0.50 1.00 1.50 2.00 2.50 3.00 Amount	g/l
组织	分表		a							
Admi	in	校正窗口								

7.5.2 内标法

内标法的基本操作与外标法相同,内标法添加内标物时,在组分表的内标列双击可选择内标物,如在组分 a 的内标处双击,可选择除自己以外的组分为内标物。

校正完毕,点击保存 Save,保存该校正文件(*.cal)。在谱图处理时即可调用该校正文件。

第六节 面积外标法的基本操作规程

配置标准 A 五个浓度, 其组分浓度如:

S1	2mg/ml
S2	4mg/ml
S3	6mg/ml
S4	8mg/ml
S5	10mg/ml

称取一定量样品 A,配置成一定浓度 T1.

打开 Survey 色谱工作站软件,新建用户 kama,设置密码,并给与角色为 administrator。 以用户 kama 操作该实验。

🖳 新建用户	×
用户名	kama
密码 角色	****** administrator
	确定

登录"项目管理"窗口。根据实验内容新建项目文件夹、项目,并重命名项目文件夹名为"外标法"---项目名为"test1"

项目管理(kama) 的项目 用户项目										
🛛 🔄 项目管理		选择	项目组	项目	状态	公开	审计	创建者	创建时间	
	۱.		外标法	test1	开始	完全	完全	kama	2015-6-29 16:31:32	查看
										编辑
										166.4年
										DRIF
										新建
显示项目										
✓ 开始										
/ 音序 / 完成										
放弃										

仪器配置。根据实验需要配置仪器单元。选择"仪器1",通过,通过中间

单击仪器主窗口上的"仪器 1"图标,选择"外标法"项目"test1",单击确定。

在仪器窗口的"仪器配置"模块,右键单击各个仪器单元,从下拉菜单中,单击"连 接",选择相应的串口号。初始泵、检测器。

新建配置方法:设置泵的流速为1ml/min,检测器波长λ =254nm,以及手动进样器 信息,编辑结束后单击保存

M	新建配	置文件(仗	用中)										×
手;	动进样器	暑 泵	检测器										
	选择 ⑦	名称 泵1 泵2	流速 1 1	结束停泵	单位 Mpa × Mpa ×	最小压 0 0 0	力 最大压 40 40 ································	7	l/min	泵 泉	梯度 2		min
l r	梯度												
	*	时间	泵1		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				选择	名称 泵1 泵2 确定			初始 开始 梯度图 梯度结束 保持当前 ◆
						保存	另	存为				載入言	当前二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十

编辑序列。根据上面给出的标准基准物,编辑进样序列(依次编辑文件名、 IC文件、MTD文件、编辑采集时间等等(如下图)。

00	3 X 洗择	■ 状态	0 (†TÉD	/ ● ③)〇(文件名	200 10文件	日日 MTD文件	瀬号	自动 重复次数	▼ 当前讲样数	进祥体积[11]	分析时间[min]	重量[2]	稀释倍数
•		等待		11-1-1-1-1-1-1	S1	102011 配置方法1	MTD方法1	1	1	0	20	10	1	1
	V	等待			S2	配置方法1	MTD方法1	1	1	0	20	10	1	1
	V	等待			S3	配置方法1	MTD方法1	1	1	0	20	10	1	1
	V	等待			S4	配置方法1	MTD方法1	1	1	0	20	10	1	1
	V	等待			S5	配置方法1	MTD方法1	1	1	0	20	10	1	1
	1	等待			样品	配置方法1	MTD方法1	1	1	0	20	10	1	1
							保	存	另存	为			载入当前	11 默认

待基线走稳后,单击开始按键 ,采集数据。采集结束,用户可以在谱图校正窗口进行校正曲线的制作。

点击图谱校正图标,进入制作校正曲线窗口。

点击打开标样,选择本地,打开标样图谱 S1,更改校正点为 1 校正点: 1 ,点击添加全

部峰 添加所有组分,然后点击添加校正点,在谱图上单击标准品 A 对应的峰,然后点击"选择组分",即可以有峰的"响应"、"数量"、"重复"数值入去进。输入组分名 A,并在响应类型列切换

校正的响应类型为面积高度,然后在浓度列输入对应组分的浓度 2,输入单位 mg/ml 如图所示:

■ 校正:											
文件 校正	查看 帮助										
○○ 100 100 100 100 100 100 100 100 100 1	日 存 打开标样	大田 添加 美田 标样	所有的选择	添加 校正点	122 已有组分选	Marka Alexandre Alexandr	如 mg/ml	校正点: 1	*	自我	2 2 2 注算
[mAu]										-5 [mAu], 6.27 [mir	1
180 -									√ s1		×
160 -											
140 -											
120											
120 -											
<u>3</u> 100 -					11						
S 80-											
60 -											
40 -											
20 -					11						
0		1.00	2.00		3.00		4.00		5.00	6.00	
					Time	•		나는 그 도			[min]
使用	组分名	保留时间 [min]	左窗宽 [min]	右窗宽 [min]	内标	响应 类型	mini	校正点:1 数量:ma/ml	重复		
1 🗹 A		2.690	0.020	0.020		Area	1007.807	2.000	1		
组分表											
Admin	校正窗口										.::

打开第二张标样谱图 s2,调整校正点

也可以保留,点击添加已有峰,浓度列输入对应组分的浓度。此时如果某个组分的响

校正点: 2

\$

第一张谱图可以关闭

应值为 0, 观察第二张谱图的保留时间是否在第一张谱图保留时间的左右窗宽范围之内, 适当调 节左有窗宽即可。

为2

1

已有组分

然后再打开谱图校正标样 s3,调整校正点为3,添加已有峰,浓度列输入对应组分的浓度;添加校正标样 s4,调整校正点为4,添加已有峰,输入组分的浓度。

添加校正标样 s5,调整校正点为5,添加已有峰,输入组分的浓度。

点击左下方组分名 A,即可查看 A 组分的标准曲线

保存标准曲线,命名为标准物质 A 校正曲线。

在谱图处理窗口打开样品 T1,在方法的校正文件处加载标准物质 A 校正曲线,

方法 结果	效率	信息	3				
全局参数	手动积分	手动积分					
校正文件	标准物质/	₩	X]			
计算	ESTD	*					

在计算处选择外标法 ESTD,

最后在结果处即可看样品 A 的浓度

	方法	结果效率信息											
L	嘿首:1uAU,												
		组分名	保留时间 [min]	峰宽 [sec]	面积 [mAu.s]	面积 [%]	高度 [mAu]	数量 [mg/ml]					
	1	A	2.688	8.8	3188.013	31.92	565.688	6.589					

第七节 面积内标法基本操作流程

配置内标溶液 A 浓度为 2mg/ml,称取一定量的标准品 B,用内标溶液稀释为一下浓度:

S1	2mg/ml
S2	4mg/ml
S3	6mg/ml
S4	8mg/ml
S5	10mg/ml

称取一定量样品 A,用一定量内标溶液稀释成一定浓度 T1.

打开 Survey 色谱工作站软件,新建用户 kama,设置密码,并给与角色为 administrator。 以用户 kama 操作该实验。

🖷 新建用户	×
用户名	kama
密码	****
角色	odministrator -
	游告
	明足

登录"项目管理"窗口。根据实验内容新建项目文件夹、项目,并重命名项目文件夹名为"外标法"---项目名为"test1"

的项目(用户项目)										_
🛛 🔄 项目管理		选择	项目组	项目	状态	公开	审计	创建者	创建时间	
	Þ		外标法	test1	开始	完全	完全	kama	2015-6-29 16:31:32	查看
										编辑
										操作
										新建
示项目										
开始										
報告										
暂停 完成										
暂停 完成 放弃										

仪器配置。根据实验需要配置仪器单元。选择"仪器 1",通过,通过中间 的"→"、"✓"、"→"、"≪""将"手动进样器""泵""检测器"配置进仪 器,单击"确定",并"关闭"窗口。

单击仪器主窗口上的"仪器 1"图标,选择"外标法"项目"test1",单击确定。

在仪器窗口的"仪器配置"模块,右键单击各个仪器单元,从下拉菜单中, 单击"连接",选择相应的串口号。初始泵、检测器。

新建配置方法:设置泵的流速为1ml/min,检测器波长λ =254nm,以及手动进样器信息,编辑结束后单击保存

新建配	重文件(使用]中)						
动进样器	泵10tv2.	10 检测器10t	v2.10					
选择	名称 泵1	最小压力 0	最大压力 40	流速 1	单位 Mpa ▼	结束	■ ml/min 泵梯度	
•						•		
		Ť	设置 运行	停止	清洗			min
梯度						_		
*	时间	泉1		流速		-	选择名称 溶剂	初始
*								开始
								梯度图
							4	弟度结束
							·	
								• 11121
							确定	
				保存		另存	字为 载入当	前前 默认

编辑序列。根据上面给出的标准基准物,编辑进样序列(依次编辑文件名、IC文件、MTD文件、编辑采集时间等等(如下图)。

□□□ □□ □□ □□ □□ □														
	V	等待			S1	配置方法1	MTD方法1	1	1	0	20	10	1	1
	1	等待			S2	配置方法1	MTD方法1	1	1	0	20	10	1	1
	1	等待			S3	配置方法1	MTD方法1	1	1	0	20	10	1	1
	1	等待			S4	配置方法1	MTD方法1	1	1	0	20	10	1	1
	1	等待			S5	配置方法1	MTD方法1	1	1	0	20	10	1	1
	1	等待			样品	配置方法1	MTD方法1	1	1	0	20	10	1	1

待基线走稳后,单击开始按键**①**,采集数据。采集数据用户在谱图校正窗口进行标 准曲线的制作。

点击图谱校正图标,进入制作校正曲线窗口。

打开标准图谱 s1,校正级别为1,添加所有组分,然后删除不必要的组分,设置组分名,添加校正 点选择组分。通过观察,标准品和内标物的几张谱图保留时间有差异,我们设置宽左右窗口皆为 0.5,在内标处点击,设置A为B的内标。

输入内标物 A 的浓度和标准品 B 的浓度,设置数量单位为 mg/ml。

自被	正:										-	
文件	‡ 校	正查	看 帮助									
[] 新建	[打J	了 F 保存	日 打开标样	大田标祥 添加 新日本社	所有的选择	を 添加 添加 校正点 柔的	■ 三有組分)	上 选择组分	数量 mg/ml 单位 ^{mg/ml}	校正点: 1	•	自定义计算
[mAu]											v/s1	
9	500 -										A	î
	400 -											
:	300 -											
B												
e -	200 -											
:	100 -					9.28						
				7.83		5	·			121203	1	
	0			4			<u> </u>			67		
		6.00	7.0	3 8	.00	9.00	10.0	00	11.00	12.00	13.00	14.00
_	_						Tin	ne		the state of the		[min]
	使用		组分名	保留时间 [min]	左窗宽 [min]	右窗宽 [min]	内标	响应 类型	nách	校止点:1 教母:ma/ml	重有	
1		A		9.276	0.500	0.500		Area	415.488	效量.mg/m	主义	
2		B		12.889	0.500	0.500	A	Area	▼ 7951.909	1.000	1	
组分列	表 A	В										
Admin			校正窗口									

关闭 S1,打开谱图 S2,调节校正点为2,点击要校正的峰,添加校正点选择组分,输入浓度

依照上面方法添加 s3,s4, s5图谱,得校正曲线,点击外标 975 974,就会转换内标

-	12				_		like odd i se		
	段止:								
Ť.	件 校正	查看 帮助)						
〔 新	🤯 💋 建 打开		新祥 关闭标样	添加 組分 所有的	1 选择的	添加 校正)	i E	144 有组分	数量 单位 mg/ml 校正点: 4 0 内标 算算 進得組分 第 日定义计算 1
	响应	数量: mg/ml	计算值	背离	重复	使用	^	[B - 12.889 min
1	7951.90	2.000	0.517	3.475	1				<u>/</u>
2	15040.41	4.000	0.975	-2.547	1				
3	22757.35	6.000	1.443	-3.777	1			80.0-	
4	32148.12	8.000	2.102	5.122	1				+/
5	35132.62) 10.000	2.459	-1.650	1				
6									
7									
8							onse	60.0-	
9						井민	es		/+
11							ě		
12						H	lSI/a		
13						H	onse	40.0-	
14						H.	esp		<u>/</u>
10	_						~ ~		
内	际	A							
HIA], Jez	꼬突型 망가 팬	Area						20.0-	
蚁.	电尖型	Origin							
曲	线类型	Linear	*						
原	点类型	Pass	~						
相	关系数 84)	0.99352	72					0.0	
残:	余	2.11578						0.0	0 0.50 1.00 1.50 2.00 2.50 Amount/ISTD Amount
组:	为表 A	В							
Adm	in	校正窗口							

保存文件名为标准品 B 内标方程。

打开图谱处理, 打开样品 T1的图谱, 在方法结果设置处加载标准品 B 内标方程, 设置计算为内标法 ISTD,设置内标物 A 浓度为4

					nme	
方法 结果 效率	信息					
全局参数 手动积分	6 结果	设置				
校正文件标准物质	iB校 🗙	内标	数量	☆率		^
计算 ISTD	~	A	4.000	死时间[min]	4	
~ 结果样式				柱长[mm]	250	
□ 隐藏内标峰						
◎ 检测峰						
○识别峰						_
○校止峰						
● 使用缩放因子	○未识别	峰				<u> </u>
Admin 谱图	数据处理					

在结果处查看,样品 B 的浓度

