工作站说明书目录

第-	-章	产品概况	1
	1.1	工作站性能及软件性能错误!:	未定义书签。
	1.2	Clarify 色谱工作站基本操作步骤	1
第_	_章	:安装与卸载	2
	2.1	Clarify 色谱工作站的安装	2
	2.2	Clarify 色谱工作站软件的安装	3
第三	E章	Clarify 型色谱工作站的有关概念	5
	3.1	Clarify 工作站需用到的部分色谱专业术语	5
	3.2	色谱处理的相关概念	5
	3.3	Clarify 工作站的文件格式	6
第四	コ章	工作站相关文件操作	6
	4.1	工作站通用的文件操作方式	6
	4.2	Clarify 工作站通用的谱图操作方式	7
第3	5章	Clarify 色谱数据工作站介绍	7
	5.1	主窗口	7
	5.2	数据采集	14
	5.3	谱图处理	19
	5.4	校正	31

第一章 产品概况

谢谢您购买我们的色谱数据工作站,为了保证您的正确操作,请详细阅读这本说明书, 其中介绍了工作站的主要性能与技术指标、安装、卸载、调试及操作示例等方面的情况。若 有不明之处,请及时与我们联系,我们会给您最满意的解答。

任何产品都有他的不足之处,我们的产品也不例外,如果您对我们的色谱数据工作站有 一些建议的话,也敬请及时与我们联系,以便我们根据您的要求对软件的进行更新完善。

1.1 Clarify 色谱工作站基本操作步骤

本章节概要的介绍工作站的操作步骤,具体介绍详见第五章。

第一步:开机并进入工作站

先打开连接的仪器,待仪器自检完毕,点击桌面的快捷方式。,进入 Clarify 色谱工作站。

第二步:设置用户账户

点击主界面的用户账户 ♀,进入用户账户,设置公司/单位名称,管理员,设置用户,访问权限,修改登录密码添加电子签名等。

第三步: 配置系统配置

点击主界面的系统配置。一进入系统配置,配置需要的仪器,修改仪器名称等工作。

第四步:设置报告样式

点击主界面的报告样式,进入报告样式,在每个选项卡里设置希望显示的内容及格式等,可以保存报告样式方便以后使用。工作站的所有报告都在此设置,也可以在之后的操作中修改报告样式。

第五步:数据采集

点击主窗口的仪器或下方的登录进入仪器界面:

1. 设置仪器配置文件。此处输入实验信息,进样器的计数器,及通道的采集频率和外置开关的控制。设置完成保存为仪器配置文件(*.inc 文件)。

10T 版的包括信息,泵,进样器,检测器(波长),通道的设置。可反控 10T 的仪器, 泵处可设置梯度,检测器可设置波长。仪器的开关可通过流程图的按钮控制,如泵的启动, 冲洗,停止,检测器波长的设置。设置完毕需保存。

单击预览可查看仪器配置的报告。

2. 单针。点击单针,选择保存路径,若不选择,工作站默认保存在 DATA 文件夹中。 勾选使用的单针,每次勾选,都将复制上一行单针的内容。然后输入每个单针的时间,文件 名,仪器配置文件,谱图处理文件(此处供快照使用)等。单针可保存(*.ss 文件),单针 文件保存了单针处的设置,仪器配置文件,保存目录等。

单机预览可查看单针的报告。

3. 数据采集。启动泵,用进样器向仪器中注射进样,按下控制开关或点击工具快捷栏的进样。

或使用热键 F3 开始采集数据。点击数据采集,在实时采样通道可以看到采集线,

待样品各组分峰出完后按下停止🥯,保存数据至指定文件夹。

第六步: 谱图处理

制作校正曲线前需将谱图进行处理。点击主窗口右上角的谱图处理,进入谱图界面。如 果导入的是其他工作站的*.cdf文件,需另存为本工作站的文件才可在校正打开使用。

1. 打开谱图。单击文件浏览 🗳 或打开 🍊 选择需要的谱图打开,如果要同时打开多张

谱图,需按下多谱图模式 200。

2. 处理谱图。如果对工作站默认判峰不满意,可在积分处通过手动积分处理谱图,删除不必要的杂峰,添加未判别的峰等。还可对同一类的峰进行分组,在谱图中添加标注等。

3. 查看谱图结果。点击谱图下方的"结果","性能"等可查看谱图的具体结果,如峰高,峰面积等。结果处自动计算了每个峰占所有峰的面积或高度百分比。在"结果"处输入组分名,可在总结处计算同一组分名的 RSD 计算。若对谱图进行分组,在"(整合)结果" 栏可查看。在"结果"处添加校正曲线,可在"系统适应性"计算判断各峰的情况。

4. 保存或另存处理完的谱图。

第七步:校正曲线

在谱图处理处处理完谱图,点击主窗口左上角的校正进入制作校正曲线。

1. 打开制作校正曲线的谱图。点击打开标样 SML,打开需要的谱图。如果是想对已

经完成的校正曲线进行修改,点击——打开。

2. 添加峰。可选择添加全部峰 💞 也可选择添加峰 🕹 , 逐个添加。

3. 输入组分名。输入组分浓度。若做内标法,双击内标列选择内标物。

4. 打开标样,调整校正点,添加已有峰 罕。

5. **输入组分浓度。** 点击组分列表的各组分名查看校正曲线,选择校正方程,外标方 程或内标方程。

6. 校正完毕保存校正曲线。可在谱图处理处使用。

第二章 安装与卸载 Clarify 色谱工作站

2.1 Clarify 色谱工作站的安装

2.1.1 硬件的安装

设备清单检查

在安装系统以前,请先按照装箱单检查各个设备及附件是否齐全。Clarify 色谱工作

站的标准配置包括下面几个部件:

- 1.) 工作站数据采集卡一个;
 - 2.) 通讯线一根(连接串行口与采集卡间);
 - 3.) 信号线(含启动开关)一根(连接工作站与色谱仪);
 - 4.) 操作手册及说明书各一份;
 - 5.) 保修卡一份;
 - 6.) Clarify 色谱工作站软件光盘一份;
 - 7.)加密锁一个(保存数据与判峰);
 - 8.) 接线桩两个;

注: 如发现上述部件缺失,请及时与本公司联系。

安装工作站硬件(外置式)

如图 2-1 所示: 左侧有一个与电脑相连的 USB 接口, 右侧有一个 9 芯的"信号输入" 串行口。

- 1. 将"数据采集线"的9针孔型接头与"采集盒"右侧标有"Input"的针型口相连, 拧紧螺丝;
- "数据采集线"的另一端接头引出了2路待铲形插簧的信号线以及2路带按钮的启动线,每一路线的套圈上均标注了"1"或"2"字样,分别对应通道1或通道2; 红线插簧为正(+)、另一为负(-),应与色谱输出信号的正、负对应;
- 用"接线桩"将信号线铲型插簧与色谱仪的输出信号联在一起,注意识别通道号并 保持极性一致;
- 4. 将"通讯线"的接头与"采集器"左侧的标有"Output"端口相连,另一端 USB 接口连至计算机,以提供工作站电源及信号。

2.2 Clarify 色谱工作站软件的安装

2.2.1 从光盘安装 Clarify 色谱工作站

将Clarify色谱工作站光盘放入光驱,从双击桌面上图标"我的电脑"开始,依照光驱(F:)、Clarify安装目录、DISK1目录、SETUP.EXE安装顺序,执行光盘中 目录下的SETUP.EXE命

赛智科技(杭州)有限公司 www.surwit.com 指定媒体中国分析仪器网 www.54pc.com 令,如图4所示。依照安装程序的提示进行相应确认即可。(假设F:为光驱,实际与用户计算机 硬盘分区有关)

2.2.2 光盘自启动安装

将Clarify色谱工作站光盘放入光驱,系统将自动跳出。

按照提示点击"下一步",选择保存路径,然后点击"下一步",

▲ ¥I2010色谱工作站【赛智科	技(杭州)有限公司] [vvv. 54p	. 🗖 🗖 🔀
选择安装路径 选择安装工作站的文件夹 。	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	
将安装工作站到下面的文件夹。			
安装到这个文件夹,点击"下一步 择另一个目录。	5″。如果希望安装到另	外文件夹,点击"浏	览"并选
当使用Windows Vista或Windov 作站可能不能正常工作。	ws 7时,不要将工作站	安装到系统程序文件	‡夹,工
目标文件夹			
C:\SaiZi		浏览	
需要空间: 30MB 可用空间: 300.64GB >赛智工作站安装<		-#>	取消
			-12.113

最后点击完成即可。

第三章 Clarify 型色谱工作站的有关概念

3.1 Clarify 工作站需用到的部分色谱专业术语

色谱图: 色谱柱流出物通过检测器系统时所产生的响应信号对时间或者说载气流出体积的 曲线图。

色谱峰: 色谱柱流出组分通过检测器系统时所产生响应信号的微分曲线。

基线:峰的起点与终点之间所连接的直线。

峰高:从峰的最大值到峰基线的距离。

峰宽:在峰两侧拐点处所作切线与峰基线相交两点之间的距离。

半峰宽:通过峰高的中点作平等于峰底的直线,此直线与峰两侧相交两点之间的距离。 峰面积:峰与峰基线之间的面积。

3.2 色谱处理的相关概念

3.2.1 数据采集

在采集数据的过程中,分析仪器所输出的信号在采集器中由模拟号转化为数字信号。数 字信号传送到色谱工作站并保存在信号数据文件中。

3.2.2 积分

积分是从信号曲线上确定峰并计算其大小。积分是定量计算必不可少的。Clarity 色谱工 作站积分时,先是辨别每一个峰的开始及结束时间,并用"|"符号标记这些点,同时寻找 这些峰的顶点,确定保留时间,建立基线,计算峰面积、峰高及峰宽。在实际运行中,色谱 工作站常常必须处理非常复杂的色谱问题。在一次运行中,峰的大小可能变化很大,而且峰 经常是以很小的浓度出现。系统噪声,漂移等干扰会影响工作站用来计算峰面积和高度的基 线,最终会导致色谱过程难以完全将峰分离。只要有可能,就优化色谱分析方法来产生分离 效果。当因某些原因而难以做到时,色谱工作站必须处理复杂峰。

我们知道峰的积分是一项复杂的工作,尽管我们的工作站算法尚不能对极差的色谱峰完 全补偿,但我们的色谱工作站能够克服噪声、漂移和峰的不完全分离等问题,并从较差的色 谱图中获得可重复的结果。

3.2.3 定量

使用峰面积或峰高来确定样品中化合物的浓度,包括以下过程:弄清并鉴别您所分析的 化合物;建立分析含有这种化合物样品的方法;分析含有已知化合物浓度的一个或几个标准 样品,以获得该浓度下的响应;分析未知浓度的化合物样品,以得到未知浓度的响应;将未 知浓度的样品与标准样品进行比较,并利用标准样品的校正因子来确定未知样品中化合物的 浓度。为了获得未知样品响应与标准样品的有效比较,必须在相同的条件下采集和处理数 据。

3.2.4 校正

校正是通过进样分析指定的准备好的标准样品,来确定计算绝对组分浓度的响应因子的 过程。

5

记录:同一浓度的标准样品平行进样的次数。

校正点:由一个校准不同样品浓度的校准点组成。

标准样品:也叫校准样品或标准混合物,是含有用于定量的已知数量的化合物样品。标准样品可从国家标准试剂供应商处买到。

校正曲线:是由一个或多个标准样品获得的化合物数量与响应数据间的图形表示。

3.2.5 报告

报告包含所分析样品的谱图,结果,单针,仪器配置,手动积分,校正等信息。报告可 以直接打印,或在屏幕上显示。

3.3 Clarify 工作站的文件格式

3.3.1 单针(*.SS 文件)

单针是工作站对色谱仪的信号进行采集的序列。包括保存路径、针号、状态、文件名, 采集时间,仪器配置文件、谱图处理文件等。单针保存为*.SS 文件,采样前可直接打开使用。 3.3.2 仪器配置(*.INC 文件)

仪器配置是对实验信息的记录,如色谱柱,流动相,流速等,以及外部控件的使用,采 集频率的选择。反控版还可设置泵的流速、梯度、压力、检测器的波长等。保存为*.inc 文 件,可在同一仪器配置条件下使用。

3.3.2 谱图处理(*.CP 文件)

可通过谱图窗口,文件导出,导出谱图的积分,结果,性能等信息,应用 CP 文件可调 用该文件的方法。在单针中加载谱图处理文件可使用快照功能。

3.3.3 谱图(*.CDF文件)

本工作站的谱图文件格式是大多数通用的*.cdf 格式,可以导入其他工作站的 AIA(*.cdf) 文件,也可以导入 N2000 的 DAT 文件,导入的文件需另存为本工作站的*.cdf 文件才能保存。

3.3.4 校正曲线(*.CAL 文件)

在校正窗口制作的校正曲线,外标法或内标法。在谱图处理中通过调用校正文件计算浓 度,系统适应性等。

3.3.5 日志文件(*.LOG文件)

日志用来记录工作站的运行,如打开关闭,进样等,日志文件以日期为名称每天形成一个*.LOG 的日志文件。

3.3.6 报告样式文件(*.STY 文件):

本工作站所有的报告样式都在主窗口的报告样式处设置,设置好的报告样式保存为 *.STY 文件。

注:保存文件时,不允许出现点"•",否则该文件无效。

第四章 工作站相关文件操作

4.1 工作站通用的文件操作方式

4.1.1 文件的打开:从磁盘中调入一个已有的谱图作为当前对象进行操作。

4.1.2 文件的保存:将当前内存中的文件以另一个文件名保存到磁盘中,需要选择或者输入

一个文件名,保存。

4.1.3 文件的另存: 将内存中正在使用的谱图作为另一个文件名保存到磁盘中。 **4.1.4 文件的新建:** 清除之前编辑的,恢复默认状态,重新编辑。

4.2 Clarify 工作站通用的谱图操作方式

4.2.1 谱图的放大:在谱图窗口内,按住鼠标左键,从左向右选一个区域,放开鼠标,所选 区域即被放大。

4.2.2 谱图的缩小:与放大的操作步骤相反,即在谱图窗口内,按住鼠标左键,从右向左拉一个区域,放开鼠标,谱图即变为全谱图。

4.2.3 谱图的拖动: 即在谱图窗口内,按住鼠标右键,任意移动鼠标,即可将谱图的其他部分显示在窗口内。

4.2.4 谱图的自动显示:工作站默认以第二峰高显示,双击谱图窗口的谱图名,就恢复第 二峰高显示。

第五章 Clarify 色谱数据工作站介绍

5.1 主窗口

Clarify 的主窗口包含了采集,校正, 谱图处理, 系统等按钮, 点击即可进入相应模块。

单机仪器图标或登录按钮可以打开数据采集窗口。

图中第一个是已经打开的仪器,用户名以管理员登录,另一个仪器并未登录。

图标上面是仪器的名称,登录之后,图标下方以登录的用户名显示。

登录仪器前,点击仪器或登录按钮,会出现登录对话框,选择用户名,输入密码,确定即可 登录。

登录	ero (do litero (do lite	×
用户名	管理员!	~
密码		
通知		取消

5.1.1 系统: 主窗口左侧有五个系统图标,分别为系统,仪器配置,日志,报告样式和关于。 表格5.1.1.1 五个系统图标

	用户账户	设置访问权限和密码尤其是管理用户帐户。
1	系统配置	设置仪器的配置。
	日志	显示了选中的记录任务和设置他们的日志。
1	报告样式	编辑报告,设置报告的格式样式。
	关于	关于本工作站的版本,所有权等信息。

用户账户

调用用户账户,系统配置及日志都会出现登录对话框,选择用户名才能进入。

用户账户用来管理用户帐户、访问权限和密码。调用 按钮并登陆后,就会出现用户账户 对话框,在这里你能够定义工作站的所有用户并设置他们的访问权限。登录之前需先关闭所 有仪器及窗口,否则会出现提示对话框

用户账户	K
请退出所有打开的仪器及窗口!	
确定	

进入用户账户,出现用户账户对话框

用户账户							E
公司/单位 管理员					1 2 3	用户列表管理员!匿名	
用户信息一	管理员!]	通防回	除 权限 日中唯日	÷.	☑ 校正	
描述	这是系统管理员	<		87 g(7 系统配置 日志 访问	£	 ♥ 役品 ♥ 谱图 仪器名 	
创建日期: 密码状态: 最后修改: 最后登录:	2012年10月25日 [无] 2011年1月1日 2012年10月26日	修改密码	1 2		气机液	相 相	
签名						The second se	

公司/单位:输入单位名称,该名称会在报告的下方正中显示。如图 5-1。

管理员:可输入管理员名称

用户列表:可修改用户名,也可以在空行处增加新的用户名,每增加一个用户,系统自动预 留一行。

删除:选择预删除行,点击删除按钮,则删除该行。

用户信息

用户名:显示当前选择的用户名,可以对其修改,同时用户列表处的用户名也随之更改。 **描述:**可输入用户信息等。

创建时间: 创建该用户名的时间。

密码状态:显示当前的密码状态,如果未设置密码,状态为【无】,点击右侧"修改密码" 按钮,可更改密码,会跳出修改密码对话框,

修改密码	×
原密码	
再次新密码	
備定	取消

键入原密码与新密码,确定,密码修改成功,此时状态显示【提交】 最后修改:最后修改密码的时间。修改密码之后就会显示最近一次修改密码的时间。 最后登录:对应用户最近一次登录的时间。

签名:点击对话框空白处,选择电子签名,支持*.JPG 格式,将会在报告的右下角显示。

图 5.1.1.1

赛智科技

访问权限:只有授权的用户可以进入查看或编辑这些内容。只要在这些内容的前面勾选了就 有了该项的授权,否则就无权进入访问。

5.1.2 系统配置

用于设置空间站的配置,这些信息都保存在日志里。调用 🌽 系统配置按钮,系统配置 对话框就会打开。系统配置对话框仅允许授权的用户访问。

与仪器连接: 使软件与仪器连接正常才能实现对仪器的反控。双击 C-10Tvp ,出 现 LC-10Tvp 设置对话框,点击连接,使当前出现"2239",状态为已配置。打开通道,通 道灯显示为绿色闪烁。

选择需要的仪器右键——配置到仪器。

(统已安装模块	标号	配置仪器			
LC-10Tvp	1				
- 100 Z	属性	哭 1			
- - - - - - - - - - - - - -	〔 于	器 1			
j j	器刘修署	器 1			
- 回 相 5	E位仪器	器 1			
##杜 -	7e8æ	器1			
	2	E T			
影 比例阀		仪器 2	\backslash		
· 29 泉1 - 20 泉2		1.2番2 仪器2			
─────────────────────────────────────		仪器 2			
	番	仪器2	安装模块	来自	
─────────────────────────────────────		DC HH -	A PROPERTY OF THE PROPERTY OF		_
● 日本通行 ● 柱温箱 ● 靜 检测器		仪器 2 心器 2	一器比例网	LC-10Tvp.1	^
 □□□ 柱温箱 ●□□ 柱温箱 ●●□ 柱温箱 ●●□ 柱温箱 ●●□ 柱温箱 ●□ 柱温箱 ●□ 柱温箱 		仪器2 仪器2	彩比例函 	LC-10Tvp.1 LC-10Tvp.1	^
 □□□ 柱温箱 ●■ 检测器 □ΔΛ 通道 		仪器2 仪器2	彩 比例间 	LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1	•
- <mark>回</mark> 柱温箱 - ∰ 检测器 - 瓜 通道		仪器 2 仪器 2 仪器 2	*** - 29 泵1 - 29 泵2 - ジ 菜2 - ジ 洋祥器	LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1	•
● 日温箱 ● 一種温箱 ● 一種 检测器 ■ △ 加通道		仪器2 仪器2 仪器2	 ※比例約 ※ % %<!--</td--><td>LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1</td><td>•</td>	LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1 LC-10Tvp.1	•

(2器数: 仪器数表示当前选择的仪器总数,点击右侧的└+┘,仪器数就增加1

仪器数	AA	仪器 1	^		仪器数	AA	仪器 1	^	1
2	AA	仪器 2		+	З	AA	仪器 2		L+
	×	仪器 3		\square $-$		AA	仪器 3		
	×	仪器 4	-	_		×	仪器 4		-
	×	心毀 ₅	~			×	☆巽 5	~	

同时,主窗口的仪器也增加,相反点击 按钮,仪器则减少。

Δ. 0	larify (VI2010)	Ŕ)	
校			道图处理
\mathbf{Q}	气相	液相	液相
Z		NAM	
()			A ELA
3			0
	豆求	豆求	
	赛智科技(杭州)有限公	司	

仪器:选择仪器,如仪器1

在类型的下拉菜单可选择仪器类型,名称处可以修改名称。 下面的图片,左边是未登录的图片,即仪器关闭图片,右边是登录后的图片,即仪器打开后 的图片。单击图片会出现图片选择对话框,可以选择图片修改。

5.1.3 日志

日志窗口用于记录工作站的个人操作。被授权的用户才可以查看。点击主窗口的日志按

钮 🚺 ,登录。

(1) H =	5					
文件	筛选查看 帮助 📈					
8		1 fTb	🌽 历史	1		
	日期时间		用户		描述	^
1	2012-9-4 17:02:12	-			退出工作站	
2	2012-9-4 16:35:13	A		1	启动工作站	
3	2012-9-4 16:35:13				配置载入异常,将重新初始化!	
4	2012-9-4 16:25:52				退出工作站	
5	2012-9-4 16:25:52	til	管理员!	1	液相	
6	2012-9-4 15:48:43	fill	管理员!	1	液相	
7	2012-9-4 15:48:05	Δ.			启动工作站	
8	2012-9-4 15:48:05				配置载入异常,将重新初始化!	
9	2012-9-4 15:47:58				退出工作站	
10	2012-9-4 15:47:31	Δ.			启动工作站	
11	2012-9-4 15:47:31				配置载入异常,将重新初始化!	
12	2012-9-4 15:47:23				退出工作站	
13	2012-9-4 15:47:22	fili	管理员!	1	液相	
14	2012-9-4 15:47:17	fill	管理员!	1	液相	
15	2012-9-4 15:47:14	Δ.			启动工作站	
16	2012-9-4 15:46:00				退出工作站	
17	2012-9-4 15:45:53	fili	管理员!	1	液相	
18	2012-9-4 15:43:31	fill	管理员!	1	液相	
19	2012-9-4 15:43:28	A		-	启动工作站	-
20	2012-9-4 15:43:28				配置载入异常,将重新初始化!	
21	2012-9-4 15:43:22				退出工作站	
22	2012-9-4 15:38:41	A			启动工作站	~
当前日	志 文件:2012 9 5,2012	94			1. <u> </u>	1
abc 🚺						
		_		_		

文件

表格5.1.3.1 五个系统图标

打开	打开日志文件。打开的文件会显示所选日期的记录。
预览	预览当前打开的日志。
打印	打印当前打开的日志。
退出	退出日志窗口。

打开:打开保存在工作站里的日志文件,新的文件会和当前日志并排显示。如果再打开一个日志文件,文件名并排显示,后打开的内容在前一个上叠加显示。

筛选:选择要显示的内容项

查看: 置项:选择,则会在置顶前勾选,日志窗口总是显示在最前,不能被别的窗口覆盖。 **项目设置:**右上角会出现一个窗口,选择日志显示的内容,再次选择项目设置,窗

口消失。也可直接使用,必按钮。

系统	校正	谱图	仪器	1
 ✓ 启 ✓ 用 ✓ 系 	动工作 ³ 户账户 统配置	Ъ.	,	退出工作站
☑ 打	EP			

历史:当用户列前的图标显示为 7 时表示已保存为 pdf 格式。

	日期時	J间		用户		描述	
1	2012/12/20	13:07:53	1	管理员!		日志	
2	2012/12/20	9:16:01	fil	管理员!	1	液相	

如何转化 PDF 格式。选择,点打印 🍛 ,出现打印窗口

打印	?
[規	
选择打印机	
🔄 添加打印机	
Microsoft XPS Document Writer	
状态: 准备就绪 位置・	首选项 (图)
备注:	查找打印机 (四)
	打印到文件 (2)
页面范围	
③全部 (L)	份数 (C): 1 😂
○页码(G):	□自动分页 @) 11 22 33
L.	
[打印(2) 取消 应用(4)

选择 Microsoft XPS Document Writer,点打印,输入文件名保存。该日志的图标变为 PDF

图标,表示可以 PDF 查看,双击工具快捷栏的 PDF 图标 型即可查看。转化的 PDF 在 Audit 的 Document 文件夹里。

5.1.4 报告样式

点击报告样式按钮,进入报告设置。整个工作站的报告设置都在此处设置。

报告样式	X	页面设	置 单针	仪器配置	校正	谱图	(整合)结果	总结	系统适应性日志
页面设置单针 化器配置 校正 请图 《整合 結果 总结 系统适应性 日志 · · · · · · · · · · · · · · · · · ·		 	≜谱图模式 計模式	t 标题 谱图	报告				日分組
项目字体 值字体		✓ 诸	图	☑ 进村	¥信息		仪器配置 - ·	信息	
	开 建	死 ☑ 纸	涂	□ :道B ☑ 访问	副倉県) 可权限		仪器配查 - · · · · · · · · · · · · · · · · · ·	変数 图像	 ● 第2峰高显示 ● 東美田二
页边距 顶 120 ♀	存 子 子 (☑ te 清除	:能	口审议	+追踪				
底 120 🗘				打印次	序		1		
☑ 电子签名		1	谱图				1		
		2	结果						
[]] []] []] []] []] []] []] []] []] []]		3	性能						
		4	进样信息	ļ.					
		5	访问权限	ł					

页面设置:设置谱图的字体,谱图大小,页面大小等。若在图案处选择了图案,预览时 就会在报告的上方显示,但是图案的尺寸需符合。其他选项可自行选择相应模块需要显示的 内容。有多个选项时,如谱图选项,打印次序即按照勾选的序,点击清楚按钮,所有勾选的 内容都将清除。

5.1.5 关于

描述一些关于软件的版本,公司电话等信息。

5.2 数据采集

5.2.1 数据采集

数据采集主要用来采集仪器的信号。数据采集窗口可以通过单机仪器图标或登录按钮打 开,点击数据采集选项,进入数据采集界面。

流程图

仪器进样的流程图:①溶剂瓶,②泵,泵旁边有三个按钮,R=RUN(运行),P=PURGE (冲洗),S=STOP(停止)。③混合器,④进样阀,⑤色谱柱,⑥灯,控制灯开关,⑦检测器。

执行泵和灯的开始停止时会出现相应的提示对话框,以免无意关闭仪器。如

操作泵 🛛 🔀	灯 🔀
· 神洗 请确认排空阀已打开!	2 关闭
确定 取消	确定 取消

仪器的相应命令在仪器配置处修改。

泵:此处编辑泵的流速梯度等。

硬件参数:表①示等度表,即没有梯度时,泵按照此处设置的流速运行,此处可设置泵的流速,最小压力,最大压力,右侧有 MPa,kfg/cm,bar,psi四个压力单位可以选择。

1MPa=106Pa=10bar=145.03psi

1 bar=10⁵ Pa =14.503psi

表②是梯度表,如果在此表设置了梯度,表①就无效,一旦开始,泵就按照梯度表设置 的流速运行。

在溶剂表的颜色列双击可修改溶剂颜色,保存后右侧的梯度程序图就会以相应的颜色对 应的比例显示,运行梯度后,梯度程序图中会有一条指示线随之时间而移动,指示当前梯度。

显示:显示溶剂,进样阀,泵上的信息显示。由于目前还未能实现仪器与软件的互通, 所以显示的值均不真实,默认不显示。

注: 10T 泵的流速上限是 9.999ml/min,若流速超过此限制,工作站将直接忽略此流速命令的发送,以免对 泵造成损害。

柱温箱:设定柱温箱的温度。(目前 10T 无柱温箱,待仪器升级之后可实现反控)。

检测器{单波长}:目前只能用于单波长的设置,在此处修改了波长,检测器上的波长就 会改变。显示处可选择是否在流程图的检测器部分显示波长。

通道: 主要用于进样阀的触发。

硬件参数: 左侧显示通道, 右侧 **外部控制:** 勾选使用并选择控件功能。

仅开始,每次触发只能控制开始采集,开始后再次触发不起作用。

开始-开始,触发控制开始,每一次触发数据都将重新开始采集。

开始-结束,第一次触发采样开始,再次触发,采样结束。

仪器名:显示了当前打开的仪器名称,点击左侧图标¹会出现下拉菜单,可对该窗口进行 相应的设置。

帕 仪器:气相								
-	还原(B)							
	移动(Ш)							
	大小(S)							
-	最小化(图)							
	最大化(2)							
×	关闭(C)	A1+#4						

通道灯:打开工作站通道灯显示蓝色,当与仪器连接后,灯变为绿色。下方的数值是当前工 作站接受到的数值。

<u>注,若采集过程中,通道灯变为蓝色, 仪器与软件中断,请检查采集盒,仪器,电脑之间的接触是否良好。</u> 或通过主窗口进入系统配置,查看目前仪器配置是否正常。

信息框:显示单针的文件名,样品 ID, 仪器配置文件及谱图处理文件信息。

菜单栏

文件:选项 选项 点击出现选项对话框,可对谱图进行设置。选项中未标明"当前谱图"的设置,应用后会对工作站中所有谱图(数据采集,校正,谱图)进行设置。

选项		×	选项			
图像 项目			图像项目			
1	峰(当前谱图) ——	辅助轴			仪器&信号颜色	~
🔲 显示网格	☑ 组	⑧ 当前谱图		1		
	☑ 组分名	○ 所有谱图		2		
背景颜色		▼ 压力1		3		
字体	□ 高度	□ 康力2		4		12
	☑ 保留时间			5		1
基线(所有谱图)	☑ 标문			6		
🗹 显示				7		
		1±m		8		
				9		
☑ 显示标识				10		
				11		
	应用	关闭		应用	关闭	

图像

显示网格: 勾选该项, 预览时谱图显示网格。

背景颜色:点击旁边的颜色框可选择想设置的背景颜色。 **字体:**点击旁边的颜色框可选择想设置的背景颜色。 **基线(所有谱图):**选择适合的线型作为基线。 **显示标识:**勾选谱图显示峰分割的标识。

峰(当前谱图): 只应用在当前谱图, 勾选则显示这些内容。

组:若谱图有分组,显示分组的名称。

组分名: 谱图显示输入的组分名。

面积: 谱图判峰后的峰面积。

高度: 谱图判峰后的峰高度。

保留时间: 识别峰的保留时间。

标号:显示峰个数的编号,第一个峰为1,第二个峰为2,以此类推。

根据校正着色: 谱图中添加了校正文件, 相应的峰根据校正中设置的颜色显示。

项目: 主要设置仪器信号颜色,若现在的采集线是黑色的,双击项目中的黑色,选择需要更换的颜色即可改变,同样在谱图中打开多张,选择谱图对应的颜色双击可以设置改变。

退出:退出当前仪器,若此时正在采集,需先停止或放弃才能退出。

分析:

表格 5.2.1.1 分析

A	进样(F3)	开始运行单针。
۲	停止(F4)	停止运行,文件自动保存至指定文件夹。
8	放弃(Ctrl+Q)	放弃采集,数据丢失,不会保存。

查看:选择其中的某一个,就会在前面加上勾

表格 5.2.1.2 分析

要币	当前仪器窗口永远					
	在最上面,不会被之后打开的网页或窗口覆盖。					
国空楼枞标室	固定横坐标范围,若横坐标设的宽度范围是 20min, 谱图显示当前					
回疋傾坐你见	时间往前 20 分钟的谱图。					
延展横坐标宽	时间随着峰的延展而延展,从0开始一直延展下去。					
不调整横坐标	时间轴不变,超出范围也只显示设定时间范围内谱图。					

帮助:点击显示帮助。 🚨 主窗口,点击显示主窗口。

实时采样通道:右键出现,可设置或取消背景谱图。设置背景谱图时,打开谱图对话框选择 背景谱图。重置背景谱图,背景谱图去除。

左下角的通道 😔 **通道2** 在走基线时显示蓝色,进样采集时显示红色。

单机又上角的 "< >"可转换显示其他信号,气相可选择显示程温,液相可选择显示压力, 柱温。

显示/隐藏按钮22,点击可显示/隐藏快照,如果在单针处设置了谱图处理文件,单击刷新

¹ 刷新,可显示实时信息。

5.2.2 仪器配置

采样前需先设置配置仪器,如采集信息,频率等。该处的信息进样结束保存后将不可更 改,所以进样前请确认所有信息都设置完毕。进入仪器配置界面,工具快捷栏处会新增几个 快捷工具。

新建		新建仪器配置文件,所有内容设置信息回复默认状态。	
打开 仪器配置	1	打开保存的仪器配置文件。	
保存		将仪器配置文件保存。	
另存		将仪器配置文件保存。	
预览	3	预览仪器配置文件的内容。	
打印	-	打印仪器配置文件。	

表格 5.2.2.1 新增的快捷工具

仪器配置有信息,进样器,通道三项。设置完的仪器配置需保存或另存为*.inc 文件,每次

修改可以通过保存 🖵 按钮或保存按钮 保存 保存。

外部控制:勾选使用并选择控件功能.

仅开始,外部控件只能控制开始,开始后再次按开关不起作用。 开始-开始,外部控件控制开始,没按一次开关采样都将重新开始。 开始-结束,第一次按开关采样开始,再次按开关,采样结束。

5.2.3 单针

仪器配置设置完成,进入单针进样。单针快捷工具栏的快捷按钮与仪器配制处相同。保 存单针文件将保存单针的保存路径,仪器配置文件及谱图处理文件等。

仪器	配置[]	単针		数据采集					
保存	目录								
	针号	状态	使用	针数	时间 [min]	文件名	仪器配置文件	谱图处理文件	打印
1				1	300	%N %3n%T	L I	3	
2									

保存目录: 文件默认保存在 DATA 文件夹里,可点击旁边的按钮选择保存路径,也可直接在 文本框中输入保存路径。若输入的路径文件夹在电脑中不存在,单针结束后会自动生成一个 同名的文件夹,并保存在该文件夹里。保存目录可自定义保存路径,如输入%D%T,进样结 束后,在 Data 文件夹内自动生成以日期时间命名的文件夹。

表格	5.2.3.1	各符	号代表

<u> </u>	0/[1]0	括号内的 x 是多少,文件名就有几位,如%3n,文件名为
件前り釵[①釵]	%[X]N	001,%2n,则为 01。 <u>文件名: 气相 00113_07_53</u>
针号	%i	i代表针号, 可将i改为实际针号
仪器号	%с	c 代表针号, 可将 c 改为实际针号
仪器名	%N	显示当前打开的仪器名文件名: 100113_07_53
用户名	%u	显示登录时的用户名
百分号%	%%	显示百分号
时间 hhmmss	%Т	显示当前进样的时间小时分钟秒
日期	ov D	显示当前日期年月日
уууу	%D	
分钟	%M	显示当前的分钟时间
小时	%Н	显示当前的小时时间
日 (月)	%o	显示本月的日期号
日(周)	%w	显示本周的星期号
日 (年)	%ј	显示本年中当天所在的天数
月	%m	显示本月的月号
年	%Y	显示本年的年份
年(后2位数字)	%у	显示本年年份的后两位数

单针表:右键列设置可选择显示内容。当前进样行不可编辑(除了时间)。

针号:所在行的进样针数。

状态:运行时红色,重置状态列或单针进样结束显示蓝色。右键重置状态列,状态显示为蓝

色,运行单针,运行时为红色,运行结束后变为灰色,进完设定针数,单针自动跳至下一行。 使用:在使用的单针前打上勾,勾选后自动复制上一行内容。同时新增一行预留行。 针数:设置进样行的针数。 时间:样品运行时间,运行结束自动保存至指定文件夹。采集过程中,如果想修改进样结束 时间,输入时间,按回车确认即可。 样品 ID:样品的信息。 浓度:样品的浓度 体积:样品进样的体积 文件名:当前进样样品的名称,可通过旁边的按钮选择,也可自行输入。具体符号表示见表 格 5.2.3.1。

仪器配置文件:通过点击旁边的按钮选择文件。

谱图处理文件:加入谱图处理文件(*.cp)可在采集时使用快照。谱图处理文件可通过 谱图处理窗口导出

打印: 勾选打印,采样结束可自行打印,但是需要连接打印机,同时需打开谱图界面,切换 到希望打印的界面,否则工作站无法识别打印的内容。

5.3 谱图处理

数据采集完毕,可在谱图处理处打开采集的谱图,工作站会自动对谱图判峰。点击主窗 口右上角的"谱图处理"图标即可进入。

文件 查看 帮助 区 次 ③ ④ ③ () 次 ④ ④ () 次 ④ ④ ● 诸田密修 () 塗合) 珍提 息結 系統適应性 人 [min] 0 到 [min] 15 人 [my] -500 到 [mv] 130 ④ ④ ④ ● 〈 > () @ 18.0 16.0 17.73 57.3 69.9 63.4 〈 > () @ 〈 > () @ 18.0 16.0 3.00 1.73 57.3 69.9 63.4 〈) () @	∭ 谱图					
小 (min) 0 到 (min) 15 从 (mv) -500 到 (mv) 130 ④ ④ ◇ 〉 (強速) 18.0 15.3 57.3 69.9 63.4 3.67 60.7 1.86 7.153 1.86 7.153 7.153 7.153 7.153 7.153 7.153 60.7 1.86 7.153	文件 查看 帮助 🔼					
诸田記條 (整合)结果 总结 系統适应性 从[min] 0 到[min] 15 从[mv] -500 到[mv] 130 ••• ••• >•• (整森 [mv] ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ······ ······ ······ ······ ······ ······ ······· ······· ······· ······· ······· ······· ······· ······· ·········· ·········· ········ ········· ············ ······················ ····································	🔊 🔂 🔩 🖬 🗙 🗟 🍏 🌽	2				
人[min] 0 到[min] 15 从[mV] -500 到[mV] 130 Q Q <	· - - - - - - - - - - - - -	系统适应性				
Imv] 18.0 16.0 16.0 16.0 1.733 16.0 1.733 16.0 1.733 11.733 57.3 69.9 2.6523.122 3.748 10.0 2.00 3.00 0.00 1.00 2.00 0.00 1.00 2.00 0.00 1.00 2.00 0.00 1.00 2.00 1 1.00 2 1.00 2 1.00 2 1.00 2 1.00 3 1.00 2 1.00 3 1.00 2 1.00 3 1.00 2 1.00 3 1.00 3 1.00 3 1.00 4 1.00 5 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1	从[min] 0 到[min] 15 从	[mV] -500 到	[mV] 130	0.0		< > [隐藏]
18.0 95.3 307 16.0 1.733 57.3 69.9 14.0 3 4.72 4.83 63.4 12.0 3 4.72 4.83 63.4 10.0 3 4.72 4.83 63.4 10.0 2.6523.122 3.67 60.7 6.0 7.153 7 6.0 7.00 8.00 9.00 1.00 2.00 3.00 4 2.00 3.00 4.00 1 重叠峰 0.823 1 重叠峰 0.823 1 重叠峰 0.823 1 重叠峰 1.73 2 重叠峰 1.73 3 重叠峰 1.73 4 重叠峰 3.748 5 重叠峰 3.748 6 重叠峰 3.748 7 单峰 7.153 6 重叠峰 3.748 6 重叠峰 3.748 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< th=""><th>[mV]</th><th></th><th></th><th></th><th></th><th></th></t<>	[mV]					
組分名 峰类型 保留 [min] 故正文件 ★ 1 重叠峰 0.525 3 2 重叠峰 0.823 147: 3 重叠峰 0.823 147: 4 重叠峰 2.652 55 5 重叠峰 3.122 65 6 重叠峰 3.122 65 7 单峰 7.153 66 愈汁 1500 使用縮放因子 总量: 1 6 6 1000 1000	18.0 16.0 14.0 14.0 10.0 8.0 10.0 8.0 10.0 8.0 1.733 1.733 0.0 1.00 2.00 花公 名のア 1.733 1.735 1	57.3 69.9 4.72 4.83 63. 2.6523.122 3.6 4 5 3.00	4 7 88 4.00 时间 ^{5.0}	10 6.00 7	√ 白酒标样 60.7 1.86 7 .153 7 .00 8.00	1 9,00 [min]
1 重叠峰 0.525 36 2 重叠峰 0.823 147 3 重叠峰 1.733 86 4 重叠峰 2.652 57 5 重叠峰 3.122 66 7 单峰 7.153 66 总计 1506 使用縮故因子 总计 1507 1	组分名	峰类型 [保留 面 [min] [m\	校正文件 计算 外标法	×	
2 重叠峰 0.823 147: 第陳和标峰 3 重叠峰 1.733 65	1	重叠峰	0.525 38			
3 重叠峰 1.733 85 ● 所有论和峰合的峰合 ● 师有论的峰合 4 重叠峰 2.652 57 5 重叠峰 3.122 65 6 重叠峰 3.748 65 7 单峰 7.153 66 急计 1506 世界縮放日子 总计 1506 单位 1	2	重叠峰	0.823 147:	结果件式	木识别峰	
4 重叠峰 2.652 57 所有设别峰 5 重叠峰 3.122 65 所有议别峰 6 重叠峰 3.748 66 7 单峰 7.153 6C 总计 1500 使用缩放因子 单位 1	3	重叠峰	1.733 85		响应 面积	유 💉
5 重叠峰 3.122 65 所有快訊庫 6 重叠峰 3.748 65 ● 所有校正峰 7 单峰 7.153 6C ● 便用缩放因子 总计 1500 因子 1 单位 ●位 ●位	4	重叠峰	2.652 57	● 所有極測峰	因子 1	[Amt/Resp]
6 重叠峰 3.748 62 分別有校正峰 7 单峰 7.153 6C 使用缩放因子 总量: 1 总计 1505 世子 1 单位 单位	5	重叠峰	3.122 69	○ 所有识别峰		
7 单峰 7.153 6C 使用缩放因子 总量: 1 总计 1506 因子 1 体积: ? 单位 单位	6	重叠峰	3.748 63	○ 所有校正峰		
总计 150t 単位 単位	7	单峰	7.153 60	□ 使用缩放因子 →	总量:	1
	总计		1508	田子 1	体积:	?
			>			

<u>注: 打开数据量大的谱图, 打开的时间会有些长, 需等待。如打开一张采集了 500min 的谱图, 大概需要</u> <u>4min,打开之后会有打开所花的时间显示。</u>

5.3.1 菜单栏的介绍

文件

表格 5.3.1.1 文件

		点击, 左侧出现文件目录, 点击文件浏览显示电脑的文件目录,
		可直接查看保存谱图的文件夹,相应的谱图就在下面的表格中显
		示,双击文件名就可以打开该谱图。
		□ empower语图
		● EU-SM4 747M ■ EU-SM4 747M ● 线性
文件浏览	<u></u>	
		打开 保存 文件名 1 ✓ ✓ 线性.AIA1287.cdf
		2 ✓ ✓ 総性.AIA1295.cdf 3 ✓ ✓ 総性.AIA1309.cdf 4 ✓ ✓ 総性.AIA1315.cdf
		5 🗸 🖌 総性.AIA1318.cdf
		分析员 Administrator 进祥时间 20120807143910-060C
	20	选择该按钮,可打开多张谱图。
	* *	打开谱图文件。打开谱图时,可以选择打开*.cdf(工作站自身的
		或相同格式的谱图)或*.dat(N2000)格式的谱图。在文件类型
		中选择相应的文件类型。
		若打开 N2000 的谱图,会出现频率选择框,一般 N2000 的频率是
		10Hz 的,可以自己设置频率,点击————————————————————————————————————
打开	<u></u>	[112000数据文件] 🛛 🛛
		文件: 白酒标样1.DAT
		3%**[i/2] IO
		OK Cancel
关闭谱图	×	关闭选择的谱图。
关闭全部谱图		关闭所有打开的谱图。
保友(Clarify) edf		仅保存工作站自己. cdf 格式的谱图,如果要保存其他工作站的谱
Mig Clarity . Cur		图应选择另存。
另存		保存其他工作站. cdf 格式的谱图或 N2000. dat 的谱图。
		可导出. cdf 谱图文件, 信号文本(*.TXT), 谱图处理(*.CP), 图
导出		像(*.wmf)。导出的文件都在 export 文件夹里。在导出谱图的同
		时,可符谱图输出到 Word 和 Excel 甲。每次导出的图像都会被卜
应用の支供		一
<u> </u>		应用加,
退出		退出宿图囱口。

<u>注: 谱图处理(*.CP)文件,可导出谱图的积分,结果(包括校正文件),性能的参数。应用 CP 文件时应</u> <u>用这些参数。</u>

查看,帮助见 5.2.1 数据采集。

5.3.2 工具快捷栏的介绍

● 🌕 🎒 🗳 🔙 🗙 的功能在 5.3.1 菜单栏中有介绍。

表格 5.3.2.2 工具快捷栏

	云山内	谱图处理有谱图图像,(整合)结果,总结,系统适应性四块,当
	〕贝 见 	前在哪个界面,就预览该页面的内容。
-	打印<谱图>	同预览,打印当前界面的内容。
100	选项	见 5.2.1 的文件选项介绍

5.3.3 谱图窗口

有谱图图像,(整合)结果,总结,系统适应性四块。

谱图图像

谱图图 从[mir]像(〕 0	整合)结果 到[min] 2	总结 系: 0 从[m/	统适应性 w] -500	到[mAu]	300	Q	点击	切换压力	」,柱温,		隐藏〕	
[mAu]		1100 16.2 9.49		7.	546 .7			程温	(气相)	的显示 v naizu		7	
1	00 - 00 - 0 -	1.51 0.37 1.7832,70 1 2		6.7	x2#80 %3\$150 ;6 						点击可切	刀换谱图 ————————————————————————————————————	国下方的表格
⊡p -1) ∰ -2)	00 - 00 -										栏和积分 	▶图标的	显示与隐藏。
-31 -41	00 - 00 -												
-5	0.0	2.0	4.0	6.0	8.0			12.0	14.0	16.0	18.0	20.0 [min]	
积分	结果	性能 仪器	器配置 审计	文本									
		操作	时间 A [min]	时间 B [min]	值		400		🌾 📈	M TA JA	<u>Α Ι κΆ Ι</u>	οΛ οΛ	
1	全局最/	卜峰宽			15.000	sec		✓ <u>11</u>	A.	WY # C 9 C	W I T I	~ -	
2	全局最/	卜峰高			0.200	mAu	50	GALO					
							<u>N</u>	作区标签	ž				

谱图窗口大小可调,将鼠标移至谱图与结果表的分界处,鼠标变为 "♣",此时按住鼠标拖动可调整谱图大小。

按住鼠标左键从左往右拖,可放大谱图,从右往左显示全谱图,双击谱图名,以第二峰 高显示。在谱中移动鼠标,谱图右上角会有电压值和时间值滚动显示。按住鼠标右键,可移 动谱图。

谱图名前有个"√"的表示当前选择的谱图。谱图默认以第二峰高显示。

积分

积分表默认显示全局最小峰宽和全局最小峰高的参数,右侧是积分图标,每次积分事件 都会在左侧积分表显示。如添加了一个峰

	操作	时间 A [min]	时间 B [min]	值	
1	全局最小峰宽			15.000	sec
2	全局最小峰高			0.200	mAu
3	添加正峰	5.85	6.22		
4	添加正峰	8.86	9.54		

若显示的是红字表示积分事件失败。不符合积分条件。

如果要删除积分事件,选择要删除的积分事件行,右键删除或通过键盘上的 Delete 键删除。 右键重置按钮,即清楚所有积分事件,恢复默认参数。

右侧有四行图标可对谱图进行手动积分与分组等。

点击手动积分图标,操作到一半时,单机右键取消,再次点击积分图标重新选择。在谱图上 选择完时间范围后会出现一个对话框,如

检测器延迟 开始时间[min] 结束时间[min] 值 0.5491 [min] … 确定 取消	对于值响应的,可在值中手动输入 值,也可直接在谱图上选择范围, 若对选择的谱图不满意,可点击右 侧的重置键 重新选择时间范 围。点击确定完成,取消则取消。
添加正峰 并始时间[min] 1.980 结束时间[min] 2.295 值 [-] … 确定 取消	对于响应时间的积分,开始和结束 时间可以手动输入,但没有重置按 钮。

手动积分:如果对自动判峰结果不满意,可通过手动积分处理谱图。

*	检测器延迟	通过手动选择时间范围或输入延迟的时间值, 谱图将根据输入的值 向左或向右偏移。正值向左, 负值向右。
2	全局最小峰宽	设定全局的最小峰宽,小与设定峰宽的峰将不判峰
‡ ∧	全局最小峰高	设定全局的最小峰高,小与设定峰高的峰将不判峰。
ΥÇ	检测负峰	对给定的区域按检测负峰模式判峰,虚拟基线按终点信号连接。一 般工作站不会判负峰,利用该积分可按检测负峰模式判峰。
M	肩切.面积比	工作站默认的值为3,相邻两个未完全分离的峰,如果他们的面积 比大于3,则判为肩切峰,小于3则判为重叠峰。
A	肩切.斜率比	工作站默认的值为 2.5,相邻两个未完全分离的峰,如果他们的斜 率比大于 2.5,则判为重叠峰峰,小于 3 则判为肩切峰。
×	添加正峰	在选定范围内添加正峰

表格 5.3.3.1 手动积分处理谱图

		含在内。
		待删除峰 删除结果 2.652 3.122 4 5 3.748 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
凤	最小峰宽	设置某一段范围的最小峰宽,小与设定峰宽的峰将不判峰。
ţ/\	最小峰高	设置某一段范围的最小峰高,小与设定峰高的峰将不判峰。
/	最小半峰宽	设置某一段范围的最小半峰宽,小与设定半峰宽的峰将不判峰。
A	最小峰面积	设置某一段范围的最小峰面积,小与设定峰面积的峰将不判峰。
4	谷点	在某一范围内添加谷点或改变原来的谷底位置。
A	经过谷点	使基线经过谷点,调整峰(组)为单峰。
Δ۵	整合基线	整合基线,调整峰(组)为重叠峰。
Ŀ	前向水平	调整峰(组)基线向前水平
Δ	后向水平	基线向后水平

		点击该	按钮,选择一个或	多个连续的峰,	在出来的	内添加对i	古框 的	值				
		中输入	组名(工作站默认	的值是 "abc"),	选择的	峰将分为	同一组	ŧ.				
		- 語/-	几个不连续的峰分	组、洗择第一个	峰并命。	名组名后,	正占	<u></u> 書				
		运按钮	选择第二个峰 并	短,这 <u></u> 异尔一	·一个相[司过行。	, 口 灬	計				
		以及山		八组石印石乃工	- / - (
		77月円	一组,以此关推。	万组的结 禾 将住 南五八山 統	:(釜石)	5 纪朱虹3	亚小,	μJ				
		计昇设	:组所占的面积,高	度自分比等。								
	區咅	噪音评	估,在谱图中选择	噪音部分,用于	计算信	桑比。噪 音	音值会	在				
	- 朱 日	结果表	的上方显示。									
		漂移评	估,在谱图中选择	漂移的时间段,	飘移的值	直也在结果	果表的	上				
		积分	结果性能仪器配	置审计文本								
		积分 燥音(4	结果 性能 仪器配 1.836 - 6.139min): 0.066	置 审计 文本 5mV 漂移(7.584 -	- 7.968min): -60.312n	nV/h					
		积分 操音(4	结果 <u>性能 仪器配</u> .836 - 6.139min): 0.066 组分名	置 审计 文本 5mV 漂移(7.584 - <u>峰类型</u>	- 7.968min 保留): -60.312n	nV/h 目定义					
		积分 噪音(4	结果 <u>性能 仪器配</u> .836 - 6.139min): 0.066 组分名	置 审计 文本 5mV 漂移(7.584 - 峰类型	- 7.968min 保留 [min]): -60.312n 面积 [mV.s]	nV/h 目定义					
	漂移	积分 操音(4 1 2	结果 <u>性能 </u>	置 <u> 軍 计 文本</u> 5mV 漂移(7.584 - <u> 峰类型</u> 重叠峰 東西峰	- 7.968min 保留 [min] 0.525): -60.312n 面积 [mV.s] 38.624 14710	nV/h 目定义					
	漂移	积分 操音(4 1 2 3	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	置	- 7.968min 保留 [min] 0.525 0.823 1.733): -60.312n 面积 [mV.s] 38.624 14710 85.286	nV/h 目定义					
	漂移	积分 株音(4 1 2 3 4	结果 <u>性能 </u>	置 审计 文本 5mV 漂移(7.584 - 峰类型 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652): -60.312n 面积 [mV.s] 38.624 14710 85.286 57.273	nV/h 目定义					
	漂移	积分 操音(4 1 2 3 4 5	结果 <u>性能</u> 仪器配 .836 - 6.139min): 0.066 组分名	置 审计 文本 5mV 漂移(7.584 - 峰类型 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122): -60.312n 商稅 [mV.s] 38.624 14710 85.286 57.273 69.866	nV/h 目定义					
	漂移	积分 操音(4 1 2 3 4 5 6	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	置 审计 文本 SmV 漂移(7.584 - 峰类型 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748): -60.312n 商祝 [mV.s] 38.624 14710 85.286 57.273 69.866 63.409	nV/h 目定义					
	漂移	积分 操音(4 1 2 3 4 5 6 7	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	 田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748 7.153): -60.312n 雨积 [mV.s] 38.624 14710 85.286 57.273 69.866 63.409 60.678	nV/h 目定义					
	漂移	积分 燥音(4 1 2 3 4 5 6 7 <	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	車汁 文本 GmV 漂移(7.584 - 峰类型 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748 7.153): -60.312n m [mV.s] 38.624 14710 85.286 57.273 69.866 63.409 60.678	nV/h 目定义					
	漂移	积分 除音(4 1 2 3 4 5 6 7 <	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	置 审计 文本 5mV 漂移(7.584 - 峰类型 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748 7.153): -60.312n 南親 [mV.s] 38.624 14710 85.286 57.273 69.866 63.409 60.678	nV/h 目定义					
	漂移	积分 燥管(4 1 2 3 4 5 6 7 <	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	置 审计 文本 SmV 漂移(7.584 - 峰类型 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748 7.153): -60.312n 商紀 [mV.s] 38.624 14710 85.286 57.273 69.866 63.409 60.678	nV/h 目定义					
	漂移	积分 除音(4 1 2 3 4 5 6 7 <	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	要计 文本 5mV 漂稼(7.584 - 峰类型 重叠峰 重叠峰 重叠峰	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748 7.153): -60.312n 面积 [mV.s] 38.624 14710 85.286 57.273 69.866 63.409 60.678 浅,可在i	nV/h 目定义 ●	▲				
工作	漂移	积分 除音(4 1 2 3 4 5 6 7 < 单机该标记,	结果 性能 仪器配 .836 - 6.139min): 0.066 组分名	工業 工業 第8(7.584 - 「「「」」」 「「」」」 「」」 「」」 <	- 7.968min 保留 [min] 0.525 0.823 1.733 2.652 3.122 3.748 7.153): -60.312n 面积 [mV.s] 38.624 14710 85.286 57.273 69.866 63.409 60.678	nV/h 目定义 ●	★ ★ ★				

结果:点击谱图上的峰,结果表处就会跳至对应的峰所在行。

	组分名	峰类 型	保留 [min]	面积 [mV.s]	面积 [%]	高度 [mV]	浓度 [-]	自定义1	な正文件	外标法	∧	
1	甲醇	重叠峰	0.525	38.624	0.256	14.010	38.624			-		
2	b	重叠峰	0.823	14710.830	97.513	1090.293	14710.830		结果样式		未识别唯	
3	с	重叠峰	1.733	85.286	0.565	8.066	85.286			小尓峰	响应	面积 🚩
4	d	重叠峰	2.652	57.273	0.380	4.718	57.273		◎ 所有権	金测峰	田子	1 [Amt/Resn]
5	异丁醇	重叠峰	3.122	69.866	0.463	4.830	69.866		○ 所有i	只别峰		[Androsp]
6	f	重叠峰	3.748	63,409	0.420	3.673	63.409		○ 所有相	交正峰		
7	异戊醇	单峰	7.153	60.678	0.402	1.861	60.678		一一使用约	宿前	总量:	2
	总计			15085.970	100.000	1127.451	15085.970	0.000			休史	2

左侧是结果表,右键列设置可选择需要显示的内容,其中面积【%】,高度【%】计算了 各峰占所有谱图的面积或高度百分含量,相当于归一法。 右键—列设置

	可	列名	格式		不
1	 Image: A start of the start of	组分名	0.000		_
2	~	峰类型	0.000		↑
3	V	保留[min]	0.000		
4		起始[min]	0.000		
5		结束[min]	0.000		¥
6		峰宽[min]	0.000		
7		半峰宽[min]	0.000		Ŧ
8	~	面积[mV.s]	0.000		
9	~	面积[%]	0.000		
10	~	高度[mV]	0.000		
11		高度[%]	0.000		
12		√(面积)[-]	0.000		
13		√(面积)[%]	0.000		
14		信噪比[-]	0.000	8	れい
15	V	法度[_]	0.000	×	-

这里有两个自定义选项,选择之后,在结果栏处会出现一列空白的自定义列,此列可自 己定义计算公式。双击表格中的列名"自定义1",会出现一个自定义对话框。

列名: 输入想显示的列名。

表达式: 输入该列的计算公式, 如面积的3倍, 点击项目中的面积, 再点击表达式下面的乘

号按钮 *	雨 输λ 数字 3	表达式	Ara*3
ј ју ш,	TT·III/、妖丁 J,		

确定之后,该列的值就显示面积的3倍。

选择组分:若勾选了该项,该列显示该组分的计算值。如选择了组分"甲醇",还是面积的 3倍,确定之后,该列就显示甲醇面积的3倍值。

列名	3 自定义1					
表达	t式 甲醇. Ars*3					
了选	+ - 澤組分	• 組分	/ () : 甲醇)	面积 [mV.s]	自定义1
	组分名		項目	表达式	38.624	115.872
1	甲醇	1	起始[min]	StT	14710 020	115 070
2	Ъ	2	结束[min]	EdT	14/10.030	113.072
3	c	3	保留[nin]	RtT	85.286	115.872
4	d	4	面积	Ara	57 272	115 073
5	异丁醇	5	高度	Hgt	37.273	113.0/2
6	f	6	峰宽[sin]	Wth	69.866	115.872
7	异戊醇	7	半峰宽[min]	105	62,400	115 070
		8	漆度	Ant	05,409	113.072
					60.678	115.872
		1	に 取消		15095 070	811 103

校正文件:点击空格处选择校正文件(校正文件在校正中制作),点击右侧的区 按钮可删

除校正文件。在下面的计算中,可选择内标法或者外标法。 结果样式:

隐藏内标峰:如果选择的校正文件是内标方程,选择该项后可以隐藏内标峰。

所有检测峰:默认该项,谱图中所有峰都在结果表中显示。

所有识别峰:添加校正文件后,显示校正文件中识别的峰。

所有校正峰:添加校正文件后,显示校正文件中校正的峰。

未识别峰:

若没有选择校正文件,此时的浓度由此处决定显示,响应处有面积,高度和√面积(更 号面积)三项,若响应是面积,则浓度值显示的是面积值,若选择高度则显示高度值。下面 的因子为1,则值为原来的1倍,若输入2,则值为原来的2倍。如响应为面积,因子是2, 此时浓度显示面积的2倍值。因子输入后按回车确认。

使用缩放因子:

同未识别峰的因子,单位,输入的单位会在浓度处显示。

性能:

包含了一些峰性能参数的表格,此处计算都按照欧洲药典(EP)50%峰宽计算。非峰保 留时间和柱长可根据实际情况调节,响应的值也会改变,如柱效/L项和分离度等。

积分	结果性能仪器	记置审计	文本						
	组分名	保留 [min]	半峰宽 [min]	非 对称性	容量	柱效 [th.pl]	柱效/L [t.p./m]	分离度	非保留峰时间[min]
1	甲醇	0.525	0.037	1.250	-0.475	1136.782	11367.820	0.000	1
2	Ь	0.823	0.215	0.890	-0.177	81.316	813.160	1.399	柱长[mm]
3	C	1.733	0.130	1.289	0.733	985.778	9857.779	3.112	100
4	d	2.652	0.182	1.048	1.652	1181.378	11813.780	3,477	++
5	异丁醇	3.122	0.218	1.336	2.122	1133.534	11335.340	1.387	住災け具
6	f	3.748	0.260	1.354	2.748	1152.474	11524.740	1.546	
7	异戊醇	7.153	0.513	1.260	6.153	1076.762	10767.620	5.196	● 50%宽起归

在表格处右键列设置可选择显示的项。

仪器配置:

此处的仪器配置即采集时设置的仪器配置文件的内容。显示了数据采集的信息,分析员, 进样时间,样品 ID,仪器配置文件等,此处不可更改,所以在采集之前请确定所有信息是 否填写完整。

审计:

此处跟踪记录了谱图的操作,手动积分,添加修改组分等,保证数据的真实性。

户根	奴限一经冻	结,将再不可	「修改!				Х	用户名	时间	类型	行为	备注
			ſ	冻结用	户权限	15		管理员!	2012年11月9日 13:39:54	结果	设置组分名: <修改>1.73{c}	
	-		ل		1016	16		管理员!	2012年11月9日 13:39:56	结果	设置组分名: <修改>0.82{b}	
		用尸名	· 刊升	保仔		17		管理员!	2012年11月9日 13:39:57	结果	设置组分名: <修改>2.65{d}	
1	[任意用)	-]				18		管理员!	2012年11月9日 13:40:01	结果	设置组分名: <修改>0.82{b}	
2	官埋页!					19		管理员!	2012年11月9日 13:40:02	结果	设置组分名: <修改>2.65{d}	
5	他心					20		管理员!	2012年11月9日 13:40:06	结果	设置组分名: <修改>0.82{b}	
						21		管理员!	2012年11月9日 13:40:08	结果	设置组分名: <修改>2.65{d}	
						22		管理员!	2012年11月9日 13:40:12	结果	设置组分名: <修改>0.53{甲醇}	
						23		管理员!	2012年11月9日 13:40:14	结果	设置组分名: <修改>3.75{f}	
						24		管理员!	2012年11月9日 13:40:16	结果	设置组分名: <修改>3.12{异丁醇}	
						25		管理员!	2012年11月9日 13:40:18	结果	设置组分名: <修改>7.15{异戊醇}	
						26		管理员!	2012年11月9日 13:40:19	结果	设置组分名: <修改>0.53{甲醇}	
						27	\checkmark	管理员!	2012年11月9日 13:54:16	保存	{}	

左侧是用户权限设置,设置用户对该谱图的打开与保存权限,没有打开或保存权限的用 户将不可以对谱图进行相应的操作。若点击"冻结用户权限"按钮,之后将不可更改。

右侧是谱图审计表,记录了用户对谱图的所有操作行为。保存修改的谱图之后,第一列会出现"√"的标记,行为处会出现"{...}"的标记。

如果谱图有过多次保存行为,双击保存行,即行为处有"{...}"标记的行,就能打开之前修改后保存的谱图。

<u>注:只有保存了的谱图前有"√"的标记,如果打印的谱图审计中并没有"√",说明该谱图是在积分后未</u> <u>保存的情况下打印的。</u>

文本: 主要是关于谱图的信息, 如峰开始, 结束时间, 峰高峰宽峰面积等信息。

The second se

(整合)结果

语图图	劉像 (整合)结果) 总结	系统适应性					
	组分名	峰类型	保留 [min]	面积 [mV.s]	面积 [%]	高度 [mV]	浓度 [-]
1	甲醇	重叠峰	0.525	38.624	0.256	14.010	38.624
2	Ь	重叠峰	0.823	14710	97.513	1090.2	14710
З	C	重叠峰	1.733	85.286	0.565	8.066	85.286
4	d	重叠峰	2.652	57.273	0.380	4.718	57.273
5	异丁醇	重叠峰	3.122	69.866	0.463	4.830	69.866
6	f	重叠峰	3.748	63.409	0.420	3.673	63.409
7	异戊醇	单峰	7.153	60.678	0.402	1.861	60.678
8	{醇}3: 0.53,3.12,7.15			169.169	1.121	20.701	169.169
	总计			15085	100.000	1127.4	15085

(整合)结果处整合了打开谱图的所有结果,此处是一张表的结果,若打开多张谱图,则显示所有谱图的结果。表中第8行是分组的结果。

总结:打开两张或两张以上的谱图时,将每张谱图的同一组分输入相同组分名,或在结果处均加载校正文件,总结处就会自动计算同一组分的均值,标准偏差及%RSD等。

			甲醇			Ь	1		С	
	谱图名	浓度	保留 [min]	面积 [mV.s]	浓度 [g/L]	保留 [min]	面积 [mV.s]	浓度 [g/L]	保留 [min]	面积 [mV.s]
1	白酒1	1.000	0.525	38.624	1.000	0.823	14710	0.917	1.733	85.28
2	白酒2	1.000	0.523	38.648	1.001	0.762	16619	1.036	1.733	88.92
	均值	1.000	0.524	38.636	1.000	0.793	15665	0.976	1.733	87.10
	标准偏差	0.000	0.001	0.017	0.000	0.044	1349.9	0.084	0.000	2.57
	% RSD	0.000	0.225	0.044	0.044	5.502	8.617	8.617	0.000	2.95

系统适应性:系统适应性模块式为了验证一个基于色谱评价的色谱系统。使用该功能需在所 有打开的谱图处加载文件。组分将从校正文件中刷新。

使用 校	组分名	保留 [min]		验 谱图名	保留 [min]	峰宽 [min]	半峰宽 [min]	面积 [mV_s]	高度 [mV]
		[trimi]			上限:	[[imi]	[rimi]	[III012]	[1110]
			-		下限:				
				RS	D% :				
					均值				
				RS	D[%]	1			
				参数	结果				
			1	白酒1					
			2	白酒2					
			З	白酒3		1			
			4	白酒4					
			<						
			属性	È					
			• I	EP(欧洲) 描述					

在左侧空白处右键,会出现一个菜单。

表格 5.3.3.2 左侧菜单

	新建	重新制作系统适应性,所有数据清空。
4	打开	打开之前保存的*•sst文件。
	保存	保存完成的*•sst文件,工作站默认保存在 Data 文件夹里。
	另存	另存*•sst文件。
	从校正(文件)刷新	谱图添加校正曲线后,组分从校正文件刷新。

在右侧表格右键

表格 5.3.3.3 右侧菜单

列设置	设置参数列显示的内容。
清除组分参数	清楚当前所选组分的参数。
清楚所有组分参数	清楚所有组分参数,表格内无任何组分的参数。

属性:有 EP(欧洲), USP(美国), JP(日本)三个药典, 切换药典, 参数的计算就切换至 相应的药典, 描述处可输入标记信息等。 系统适应性的制作:

在谱图图像处打开谱图,若要打开多张,需先选择多谱图模式 按钮,在结果的校正文件 处添加对应的校正文件。进入系统适应性界面,在左侧空白处右键选择最后一个"从校正(文 件)刷新",出现校正文件中的组分①,当前选择的药典与校正文件及当前所选行的组分名 ②,参数③,谱图④,当前选择哪个组分,谱图处显示相应组分的参数,勾选组分名前的使 用,输入个参数的上下限值,与 RSD%的限定值,工作站会对谱图进行计算并判断。上限下 限是对均值的判断,RSD%是对谱图下面谱图参数 RSD%的限值,红色的值表示超出限制,蓝 色的字表示未给定限制未判断,正常的是黑色。

					短止	EP	<日相.cal> 狂	1分名:甲醇	6	110202	2022	0 5225 07		0.000010
	使用	校	组分名	保留 [min]		验	谱图	ž	保留 [min]	峰宽 [min]	半峰宽 [min]	非 对称性	拖尾	柱效 [th.pl]
1		X	甲醇	0.53				上限:	0.530	0.350	0.037	1.800	1.500	1250.000
2		?	b	0.82				下限:	0.500	0.320	0.035	1.400	1.100	1100.000
3			C	1.73				RSD% :	0.185		2.300	13.600	10.000	5.000
4			d	2.65		1		均值	0.524	0.355	0.036	1.443	1.323	1160.890
5	 Image: A start of the start of	~	异丁醇	3.12			3	RSD[%]	0.184	4.487	2.299	13.522	9.599	4.990
6		?	f	3.75				参数结果	~	x	~	~	~	~
7	Image: A start of the start	?	异戊醇	7.15	1	x	白酒1		0.525	0.373	0.037	1.250	1.174	1136.782
					2	~	白酒2	4	0.523	0.342	0.037	1.611	1.429	1129.576
					3	x	白酒3		0.525	0.363	0.035	1.300	1.261	1247.625
					4	~	白酒4		0.523	0.342	0.037	1.611	1.429	1129.576

表格 5.3.3.4 左侧图标说明

?	选择的组分并未输入任何数值,待编辑。
~	所有参数均符合,均在范围之内。
×	参数超过给定限值,不符。

谱图的参数也会根据给定的限值进行判断,双击某张谱图,再点击工具快捷栏的关闭**X**,可关闭该谱图。

注: 若未添加校正文件, 刷新后左下角会有"无可使用的校正文件"的提示。

系统适应性	无可使用的校正文件	

制作完毕,在左侧表格处右键保存或另存该*.sst 文件。

5.4 校正

在谱图处理处理完谱图,即可制作校正曲线,校正曲线是数据处理的重点,是将标样谱 图的信息与数据做成一个标准,供处理试样谱图使用。点击主窗口右上角的"谱图处理"图 标即可进入。

窗口的标题栏显示了当前校正文件的保存路径及文件名。

5.4.1 菜单栏的介绍

文件

表格 5.4.1.1 文件菜单

新建		新建校正曲线。重新制作校正文件。				
打开		打开之前做的校正文件。				
保存		保存制作完成的校正文件。				
另存		将制作的校正文件另存。				
打开标样	<u> </u>	打开制作校正曲线的标样谱图。				
关闭标样	×	关闭打开的标样谱图。				
预览	d	预览制作的校正曲线。				
打印	3	打印校正曲线。				
退出		退出校正窗口。				

校正

表格 5.4.1.2 校正菜单

添加全部峰	•	打开一张标样谱图,添加谱图上的全部峰。
添加已有峰	•	在已添加峰的基础上添加已添加的峰。
添加峰	÷	峰单个添加,选择该图标然后点击需添加峰。
删除组分		在组分表中,选择需删除的组分,点击该项删除选定组分。

赛智科技(杭州)有限公司 www.surwit.com 指定媒体中国分析仪器网 www.54pc.com

删除全部组分		删除组分表中的所有组分。
清楚校正点		清楚当前校正点个组分的响应记录值。
清楚全部校正点		清楚所有校正点的组分的响应校正值。
选项	2	设置校正文件的属性,详见下图。

选项

可以通过校正→选项打开,也可以通过工具快捷栏的228图标直接打开。

項	- 1941 - 1946 - 1	
浓度单位	र्छ g/L	
调整:u ③ 无 ④ 平: 〇 替:	峰位RT 均 换	 调整:响应 ① 无 ③ 平均 ○ 替换
描述	白酒	_
_		
	确定	取消

浓度单位:设置组分含量单位。

调整:峰位 RT

无:即以第一张打开的谱图的保留时间为标准。

替换:每次打开一张谱图都以新打开的谱图为标准,即以后一张谱图替换前一张谱图。 调整 响应

调整:响应

若同一校正点有两张以上的谱图。

平均:响应计算该校正点的所有谱图的平均值。

替换:上一张谱图的值被新的替换,显示最后一张谱图的值。

描述:可以输入信息方便记忆。

设置完毕点击确定按钮,取消点击取消按钮。

查看,帮助见 5.2.1 的数据采集菜单栏的介绍。

5.4.2 工具快捷栏的介绍

□ ▲ Ⅰ ▲ × 是校正中的一些快捷图标,在 5.4.1 的菜单栏的文件中有介绍。

😤 🍣 💠 是制作标准曲线时添加峰的按钮,在 5.4.1 的菜单栏的校正中有介绍。

校正点²调节谱图级别,调整校正点组分表显示所对应校正点的谱图响应值等信息。 对应组分表中的校正点选项。

校正体系总计 20 级即 20 个校正点,即各组分最多可有 20 个校正点,也即一个组份最 多可有 20 个校正点。

5.4.3 组分表

组分名按照保留时间来排序。在表格处右键出现________________________________,点击进入,可在

需要显示的列名前打上勾。

格式列有"0.000"的内容是数字,可以调节显示的小数点位数

列设置	ł			×
	न	列名	格式	
1	1	使用		
2	~	组分名		
3	1	峰位RT[min]	0.000	
4	1	左窗宽[min]	0.000	
5	1	右窗宽[min]	0.000	
6		颜色		
7	1	内标		L ¥
8	1	响应类型		
9		自由响应因子	0.000	
10	~	{校正点:}		
		确定	取消	** **

表格 5.4.3.1

使用	在使用框内打钩,表示选择使用了这个组分。					
组分名	输入保留时间对应的组分名,利于分辨。					
峰位 RT[min]	显示保留时间,不可修改。					
左窗口[min]	调节峰的左右窗宽,打开谱图添加己有组分,相应值为0,这种情况下可					
右窗口[min]	以适当调节左右峰宽,使保留时间在范围内。					
·	设置校正点颜色,在组分表单击颜色列可选择该峰的校正点颜色,当谱图。					
	设置了校正文件,设置的峰就会显示校正颜色。					
内标	双击内标列,可以选择内标物。					
响应类型	响应值响应的类型,单击切换面积,高度,更号面积。					
自由响应因子	设置自由曲线类型为自由时有用。					
{校正点:}	显示当前校正点的响应,浓度,记录的内容。					

校		
响 <u>应</u>	浓度 [g/L]	记录
0.000	0.000	0
966.194	0.000	1
0.000	0.000	0
3,208	0.000	1

	响应: 浓度:	即当前谱图 组分浓度,	的峰值响应 单位可在边	。
	%			
34			技术执线.	0571-

赛智科技(杭州)有限公司 www.surwit.com 指定媒体中国分析仪器网 www.54pc.com

5.4.4 校正曲线的制作

外标法

打开 第一张谱图,如白酒标样 1,点击添加全部峰 マ或添加峰 (在谱图上逐个添加峰),输入组分名,并在响应类型列切换校正的响应类型,面积,高度或更号面积,然后在浓度列输入对应组分的浓度。然后打开第二张谱图白酒标样 2,调整校正点为 2,

校正点: 2 , 第一张谱图可以关闭 , 也可以保留, 点击添加己有峰 , 浓度列输入对应组分的浓度。此时如果某个组分的**响应**值为 0, 观察第二张谱图的保留时间是否在第 一张谱图保留时间的左右窗宽范围之内, 适当调节左有窗宽即可。然后再打开谱图白酒标样 3, 调整校正点为 3, 添加己有峰, 浓度列输入对应组分的浓度; 添加白酒标样 4, 调整校正 点为 4, 添加已有峰, 输入各组分的浓度。

我们发现白酒标样 1 和白酒标样 2 的浓度相似, 白酒标样 3 和白酒标样 4 的相近, 可以 把前两张图归为同一校正点, 校正点 1, 把后两张谱图归为校正点 2。校正点的值就计算两 张谱图的平均值。

点击组分列表边的组分名即可查看该组分的校正曲线。

组分列表 甲醇 b c d 异丁醇 f 异戊醇

响应:显示给定校正点的响应值,响应以组分表选择的响应类型显示。

浓度:组分的浓度,可在组分表输入,也可在此输入,浓度单位可通过选项²²³更改。

计算值:浓度在计算式中的值。

背离:计算值与浓度的背离。(计算值-浓度)/浓度*100%

记录:同一校正点加入值的次数记录。

使用: 勾选表示使用该点, 曲线中显示"×", 若没有选择, 以" ⁰表示。

响应类型:组分表选择的响应类型。

曲线类型:在下拉菜单中选择曲线类型。

原点方案: 有忽略, 加入, 经过三种。

忽略: 忽略原点(0,0)

加入:把原点也记为一个点,此种方案在只有一个数据点时采用。

经过:曲线经过原点,强制过 0。

做完校正曲线,下方会显示曲线方程,相关系数以及残余。

残余:响应值与实际值的差的平方的平均开更号。

点击切换内标方程

: D	🕌 🖬 🛛	<u>\$</u> × ≅	i 🚎 🎸	校正点	1	0	2		[外标方程]	
	响应 [mV.s]	浓度 [g/L]	计算值	背离 [%]	记录	使用	^	mV.s	b - 0.823 min 24317 mV.s, 0.00 g/L	
1	14710	1.000	0.908	-9.17	1				+/	
2	16619	1.000	1.026	2.62	1				/+	
З	31330	2.000	1.935	-3.27	1	V		30000 -		
4	33239	2.000	2.052	2.62	1					
5	0.000	0.000	0.000	0.00	0					
6	0.000	0.000	0.000	0.00	0			25000 -		
7	0.000	0.000	0.000	0.00	0	 Image: A start of the start of				
8	0.000	0.000	0.000	0.00	0	 Image: A start of the start of				
9	0.000	0.000	0.000	0.00	0			20000-		
10	0.000	0.000	0.000	0.00	0			20000		
11	0.000	0.000	0.000	0.00	0	V		図	(,X	
12	0.000	0.000	0.000	0.00	0	Image: A start of the start		告 15000	7	
13	0.000	0.000	0.000	0.00	0		V	15000-		
响应 曲线 原点 Y=	响应类型 面称: 曲线类型 线性 ♥ 原点方案 经过 ♥									
相关残余	 (系数 0.) (3) (3) (3) (4) (4)<!--</th--><th>9877609 21.51457 [b</th><th>mV.s] c d</th><th>「异丁酮</th><th>鞟 f</th><th>5</th><th>异戊</th><th>0- 0.(醇 </th><th>)0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 浓度 g/L</th>	9877609 21.51457 [b	mV.s] c d	「异丁酮	鞟 f	5	异戊	0- 0.(醇)0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 浓度 g/L	
校正										

内标法

内标法的基本操作与外标法相同,内标法添加内标物时,在组分表的内标列双击可选择 内标物,如在组分甲醇的内标处双击,可选择除自己以外的组分为内标物。

	38.73.40
1	(清除)
2	Ь
3	C
4	d
5	异丁醇
6	f
7	异戊醇

选择内标物并输入相应组分的浓度,点击组分名查看校正曲线,切换右上角的方程为内标方程,残余处的单位为空。注:内标物没有内标方程。

	📹 🖬 18	\$ X 🕾	- 🖓 💠	校正点	1	012	2		[内标方程]
	响应 [mV.s]	浓度 [g/L]	计算值	背离 [%]	记 录	使用	^	甲醇 - 0.525 min 日	0.140, 1.04
1	38.624	1.000	1.011	1.14	1				¥
2	38.648	1.000	0.994	-0.60	1	 Image: A start of the start of			
З	77.190	2.000	1.001	0.06	1	~		0.500-	
4	77,296	2.000	0.994	-0.60	1	¥			
5	0.000	0.000	0.000	0.00	0	 Image: A start of the start of		/	
6	0.000	0.000	0.000	0.00	0	 Image: A set of the set of the			
7	0.000	0.000	0.000	0.00	0	~		0.400-	
8	0.000	0.000	0.000	0.00	0	¥			
9	0.000	0.000	0.000	0.00	0	~			
10	0.000	0.000	0.000	0.00	0	~			
11	0.000	0.000	0.000	0.00	0	~		援 0.100-	
12	0.000	0.000	0.000	0.00	0	¥			
13	0.000	0.000	0.000	0.00	0	 Image: A start of the start of	*		
内枝	ました。 昇	丁醇	7.777.7	7.774	1		T	0,200	
响应	2类型 面	新							
曲約	送型 经		~						
原書	京案 🚺	山入	~						
v-	0 54660V							0.100-	
1-	0.04000X								
相关	(系数 0.)	9997479						0.000	
残余	₹ O.I	00347 []						0.00 0.20 0,40 0.60 0.80 次度/内标浓度	1.00
组分	列表 甲醇	Ь	c d	异丁酮	享 f	ļ	异戊 i	醇	
				Service of the servic					
	払 正白	, FK - 1	日七位マ	-	/ 5		士+	达正立 <i>出(* ••</i> 1) 左逆团队理时即可调	田运达正立

件。